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ABSTRACT

FIR filters are known to be stable and have a linear phase
when symmetry properties. e.g., h[n] = h[M —n], arekept.
A common FIR filter design method is the Parks-McClellan
agorithm. In this algorithm, linear phase FIR filters which
are optimal in the minimax sense, are designed. Theses fil-
ters have the form of H(w) = A(w)e/(B=«2) where A(w)
is real, a is an integer or an integer plus 1/2 and 3 is 0
or 7/2. These FIR filters are always symmetric or anti-
symmetric. We introduce a simple procedure for designing
Almost Linear Phase FIR filters, having a similar form of
H(w) but an arbitrary «, that are optimal in asimilar sense.

1. INTRODUCTION

Generalized Linear Phase (GLP) filters, are filters with a
Discrete Time Fourier Transform (DTFT) given by

H(w) = A(w)e/ P~ @

where A(w) isredl. Itiseasy tosee, [1], [2], that GLPfilters
should satisfy

Z hin]sin(w(n —a) + ) =0 )]

n=—oo

It is easy to see that there are 4 types of causal FIR
filters that satisfy eguation(2), i.e., having generalized lin-
ear phase. Type-l and type-Il GLP FIR filters, have sym-
metric impulse responses h[n], i.e., h[n] = h[M — n] for
n = 0,1,...,M. The difference between the two types
is that a type-l filter has an even M. i.e., an odd number
of coefficients, while a type-1 filter has an odd M, i.e,, an
even number of coefficients. Similarly, Type-Ill and type-
IV GLPFIR filters, have anti-symmetric impul se responses,
i.e, hjn] = —h[M —n]forn =0,1,..., M. Type-lll fil-
ters have even M (and h[M /2] = 0), and type-lV filters
have an odd M.

In al of the four types we have « = M /2. Intypes|
and Il we have 5 = 0 while in types Il and IV we have

B =mr/2.
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Filter specifications are usually given in the frequency
domain. We state the desired passband and stopband fre-
guencies and the desired stopband and passband attenua-
tion. A typical Low Pass Filter (L PF) specificationsinclude
therefore, wp, ws, and the amplitude A 4(w) of the desired
filter in the passband, i.e., at w € [0, w,] and the stopband,
i.e,aw € [w,,n]. For aLPFwewould like to have

R e

Usually when FIR filters are designed, they are designed
to be one of the four types we mentioned above. Thus,
Hy(w) includes a phase factor of e/(#=«®) where @ =
M/2and 8 = 0 or w/2. For LPF, we therefore have

Hy(w) = Ag(w)e IwM/?2 (4)

However, the actual filter we acquire, having M + 1
coefficients, i.e., h[n] forn =0,1,... , M, does not satisfy
equation(4). Thefilter's actual frequency response, denoted
H(w), isnot equal to thedesired H ;(w). Theerrorin H (w)
isgiven by

E(w) = Hy(w) — H(w) Q)

A common approach isto use the minimax (Chebyshev)
criterion, i.e., to seek for the filter h[n] having H(w) that
minimizes the maximal error in the interval I = {w €
[0,wp] OF w € [ws,n]}. Thuswe seek h[n] having M + 1
coefficients (for n = 0,1,... , M) producing the minimal

weighted error § given by
6= min max {W(w)|E(w)[} (6)

where W (w) is someweighting function. Thus, the optimal
approximated filter h[n] satisfies

hln] = argmin max (W@IE@)} @)
The Parks-McClellan algorithm is probably the most pop-
ular algorithm for designing minimax optimal GLP FIR fil-
ters. Inthisalgorithm, we find the filter that minimizes § for
agiven number of coefficientsand agiven A(w) and W (w).
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2. ALMOST LINEAR PHASE FIR FILTERS

For an even M, we get alinear phase filter having a delay
of an integer number of samples. For an odd M, we get a
filter having a delay of an integer number of samples plus
half a sample. Sometimes, e.g., when shifting or scaling an
image, it is desired to have a delay that is not an integer or
an integer plus haf number of samples. The regular Park-
McClellan agorithm does not take the desired phase into
account. Well, to be more precise, it assumes that h[n] is
symmetric or anti-symmetric and therefore includes a phase
factor of e/“M/2, Therefore, equations (6) and (7) really
mean

0 =min max{W (w)|Aa(w)e FM/? — A(w)e 7M1}
n| we
®

and so, we can ignore the phase factor of e ~7“/2 and con-
centrate on

6= min max{W(w)|4a(w) — Aw)[} 9
where A(w) = H(w)ed*M/2,

The Parks-McCléllan algorithm is using the fact that
each of the four GLP FIR filter types can be written as
H(w) = /M) K glk] cos(wk) and so the
agorithmissearchingfor A(w) = Q(w) S, g[k] cos(wk)
satisfying equation (9).

For producing FIR optimal approximation (in the min-
imax sense) to afilter having an arbitrary delay, we need a
somewhat different minimax criterion. First, we define the
desired H;(w) as

Hy(w) = Ag(w)e I« M/2+e) (10)

where here a isthe extradelay (added to the M/ /2 " normal”
delay of the GLP FIR filters). Typical values for « could
be between —0.5 to 0.5, i.e., « can be a fractiona delay.
Then we define the minimax criterion. A possible criterion
isto use an equation similar to equation (6) or (8) with the
additional phase a:

5= r}{l[ir}l max {W (W) Ag(w)e 7« M/2+) _ H (W)}
(11)

Thisis not so easy to achieve. However, changing the crite-
rion to two parts as in the two following equations

6= r}{l[ir}l max {W(w)|red{ Ag(w)e «> — eI*M/2 (W) }]}
(12)

and also

6 = min max {W(w)|imag{A4(w)e7* — /M2 H(w)}|}

h[n] wel

(13)

makes it very easy to implement. The difference between
the criterion of equation (11) to the criterion of equations
(12) and (13) is in the shape of the range of the allowed
error. |f we consider H;(w) as aline in a 3 dimensiona
space, where the axes are w, and the real and imaginary
componentsof H ;(w), then equation (11) describesaround
"tube” with aradius of § /W (w) around that line. That tube
is the volume in which we allow H (w) to be. If H(w) isin
that " tube”, the weighted error TV (w)| A(w)e 7« (M/2+e)
H(w)| is smaller than or equd to . Equations (12) and
(13) describe a similar volume having a square shaped cross
section instead of the round cross section of equation (11).
Splitting the origina criterion to two parts, the real part

and the imaginary part, immediately brings us to a simple
procedurefor computing the approximatedfilter h[n]. Since
we know from the symmetry propertiesof the DTFT that the
real part of H(w) isthe DTFT of h.[n], where h.[n] isthe
even part of h[n] given by

he[n] = (h[n] + h[M —n])/2 (14
and that imaginary part of H(w) is the DTFT of h,[n],
where h,[n] is the odd part of h[n] given by

heln] = (h[n] — h[M —n])/2 (15)
we can design the even part h.[n] according to equation
(12), and the odd part h,[n] according to equation (13) sep-
arately. Looking carefully on equations (8), (9) and the
Parks-McClellan algorithm, we concludethat we should use
the Park-McClellan algorithm with new specifications asin
equations (16) and (17) below:

§ = min max (I (0)] As(w) cos(wa) = A ()]} (16)
0 = min max{W (w)|Aq(w) sin(wa) — 4,(w)|} (17)

ho[n] wel

where the algorithm is searching for a symmetric (type-
| or I) filter according to equation (16) and for an anti-
symmetric (type-111 or 1V) filter according to equation (17).
A, (w) is the amplitude response of the symmetric filter,
without the e —7«M/2 phase factor, i.e.,

H.(w) = A, (w)e 7wM/? (18)

Similarly, A, (w) istheamplituderesponse of the anti-symmetric

filter, without the e ~7(«M/2=7/2) phase factor, i.e.,

H,(w) = jAo(w)e™ M/ (19)
Thefina filter in the frequency domain is given by
H(w) = He(w) + Ho(w) (20)

and in the time domain by
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hin] = he[n] + ho[n] (21)

The fina filter does not have a linear phase. However,
its phase is almost linear and so we call it an Almost Lin-
ear Phase (ALP) FIR filter. We can increase the number of
coefficients and change the weighting function in order to
attenuate the deviation from linear phase. Note that for a
given number of coefficients, the resulting filter is optimal
in the sense of equations (12) and (13).

3. EXAMPLES

We give below two examples of ALP filters having 6 coef-
ficients. Thedesired A4(w) of thefiltersisthe amplitude of
the frequency response of a given filter

hrer[n] = [-0.00,-0.16,0.66,0.66, —0.16, —0.00], and
is shown in figure 1. In that figure we also see the ac-
tual |H (w)| of two ALP filters designed to be optimal and
have delays of & = —0.125 and o« = —0.25. These filter
were found using an exhaustive search with arelatively low
resolution of 0.005 in the coefficients values without any
weighting function for 4 .[n] and with aweighting function
of 50 for w € [0,0.87], decreasing linearly t0 10 at w =
0.97 and further to 0 at w = , for h,[n]. We aso forced
H.(0)tobel,i.e, S"™ h.n] = 1. Fora = —0.125 we
found the values of:

he[n] = [-0.005,—0.150,0.655,0.655, —0.150, —0.005],
ho[n] = [-0.020,0.025,0.125, —0.125, —0.025, 0.020] and
s0 h[n] = [-0.025,-0.125,0.780,0.530, —0.175, 0.015].
For o« = —0.25 we found the values of:

he[n] = [-0.015,—-0.115,0.630, 0.630, —0.115, —0.015],

ho[n] = [-0.040,0.050,0.235, —0.235, —0.050, 0.040] and
S0 h[n] = [—0.055, —0.065, 0.865, 0.395, —0.165, 0.025].

The resulting phase of the two filters, compared to the
desired phaseis depicted in figure 2.

The group delay, compared to the desired group delay,
i.e, M/2+ a,isshowninfigure 3.

We see that the magnitude of the acquired filtersis pretty
close to the desired filter. We also see that the resulting
phase is amost linear with alternations of the group delay
near the desired value along most of the frequency axis.

4. CONCLUSION

In this paper we had shown a simple procedure for design-
ing minimax optimal Almost Linear Phase FIR filters hav-
ing an arbitrary fractional delay. The procedure is using
the regular design methods for designing Generalized Lin-
ear Phase FIR filters. It isbased on minimax criterion which
is applied separately to the real and imaginary parts of the
desired filter in the frequency domain, thus, producing the
even and odd parts of the approximated filter separately.
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Fig. 1. |Hg(w)| (dotted line) vs. |H(w)| for « = —0.125
(solid line) and for « = —0.25 (dashed line)
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Fig. 2. Phase of H(w) for a = —0.125 (solid line) and for
a = —0.25 (dashed line) vs. the desired phase (dotted lines)
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Fig. 3. The group delay of H(w) for o = —0.125 (solid
line) and for « = —0.25 (dashed line) vs. the desired delay
(dotted lines)
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