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ABSTRACT

FIR filters are known to be stable and have a linear phase
when symmetry properties. e.g., h�n� � h�M�n�, are kept.
A common FIR filter design method is the Parks-McClellan
algorithm. In this algorithm, linear phase FIR filters which
are optimal in the minimax sense, are designed. Theses fil-
ters have the form of H��� � A���ej������, where A���
is real, � is an integer or an integer plus ��� and � is �
or ���. These FIR filters are always symmetric or anti-
symmetric. We introduce a simple procedure for designing
Almost Linear Phase FIR filters, having a similar form of
H��� but an arbitrary �, that are optimal in a similar sense.

1. INTRODUCTION

Generalized Linear Phase (GLP) filters, are filters with a
Discrete Time Fourier Transform (DTFT) given by

H��� � A���ej������ (1)

whereA��� is real. It is easy to see, [1], [2], that GLP filters
should satisfy

�X
n���

h�n� sin���n� �� 	 �� � � (2)

It is easy to see that there are 4 types of causal FIR
filters that satisfy equation(2), i.e., having generalized lin-
ear phase. Type-I and type-II GLP FIR filters, have sym-
metric impulse responses h�n�, i.e., h�n� � h�M � n� for
n � �� �� � � � �M . The difference between the two types
is that a type-I filter has an even M. i.e., an odd number
of coefficients, while a type-II filter has an odd M, i.e., an
even number of coefficients. Similarly, Type-III and type-
IV GLP FIR filters, have anti-symmetric impulse responses,
i.e., h�n� � �h�M � n� for n � �� �� � � � �M . Type-III fil-
ters have even M (and h�M��� � �), and type-IV filters
have an odd M.

In all of the four types we have � � M��. In types I
and II we have � � � while in types III and IV we have
� � ���.

Filter specifications are usually given in the frequency
domain. We state the desired passband and stopband fre-
quencies and the desired stopband and passband attenua-
tion. A typical Low Pass Filter (LPF) specifications include
therefore, �p, �s, and the amplitude Ad��� of the desired
filter in the passband, i.e., at � � ��� �p� and the stopband,
i.e., at � � ��s� ��. For a LPF we would like to have

Ad��� �

�
� � � ��� �p�
� � � ��s� ��

(3)

Usually when FIR filters are designed, they are designed
to be one of the four types we mentioned above. Thus,
Hd��� includes a phase factor of ej������, where � �
M�� and � � � or ���. For LPF, we therefore have

Hd��� � Ad���e
�j�M�� (4)

However, the actual filter we acquire, having M 	 �
coefficients, i.e., h�n� for n � �� �� � � � �M , does not satisfy
equation(4). The filter’s actual frequency response, denoted
H���, is not equal to the desiredHd���. The error in H���
is given by

E��� � Hd����H��� (5)

A common approach is to use the minimax (Chebyshev)
criterion, i.e., to seek for the filter h�n� having H��� that
minimizes the maximal error in the interval I � f� �
��� �p� or � � ��s� ��g. Thus we seek h�n� having M 	 �
coefficients (for n � �� �� � � � �M ) producing the minimal
weighted error � given by

� � min
h�n�

max
��I

fW ���jE���jg (6)

where W ��� is some weighting function. Thus, the optimal
approximated filter h�n� satisfies

h�n� � argmin
h�n�

max
��I

fW ���jE���jg (7)

The Parks-McClellan algorithm is probably the most pop-
ular algorithm for designing minimax optimal GLP FIR fil-
ters. In this algorithm, we find the filter that minimizes � for
a given number of coefficients and a givenA��� andW ���.
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2. ALMOST LINEAR PHASE FIR FILTERS

For an even M , we get a linear phase filter having a delay
of an integer number of samples. For an odd M , we get a
filter having a delay of an integer number of samples plus
half a sample. Sometimes, e.g., when shifting or scaling an
image, it is desired to have a delay that is not an integer or
an integer plus half number of samples. The regular Park-
McClellan algorithm does not take the desired phase into
account. Well, to be more precise, it assumes that h�n� is
symmetric or anti-symmetric and therefore includes a phase
factor of ej�M��. Therefore, equations (6) and (7) really
mean

� � min
h�n�

max
��I

fW ���jAd���e
�j�M�� �A���e�j�M��jg

(8)

and so, we can ignore the phase factor of e�j�M�� and con-
centrate on

� � min
h�n�

max
��I

fW ���jAd����A���jg (9)

where A��� � H���ej�M��.
The Parks-McClellan algorithm is using the fact that

each of the four GLP FIR filter types can be written as
H��� � ej����M���Q���

PK
k�� g�k� cos��k� and so the

algorithm is searching forA��� � Q���
PK

k�� g�k� cos��k�
satisfying equation (9).

For producing FIR optimal approximation (in the min-
imax sense) to a filter having an arbitrary delay, we need a
somewhat different minimax criterion. First, we define the
desired Hd��� as

Hd��� � Ad���e
�j��M����� (10)

where here � is the extra delay (added to the M�� ”normal”
delay of the GLP FIR filters). Typical values for � could
be between ���
 to ��
, i.e., � can be a fractional delay.
Then we define the minimax criterion. A possible criterion
is to use an equation similar to equation (6) or (8) with the
additional phase �:

� � min
h�n�

max
��I

fW ���jAd���e
�j��M����� �H���jg

(11)

This is not so easy to achieve. However, changing the crite-
rion to two parts as in the two following equations

� � min
h�n�

max
��I

fW ���jrealfAd���e
�j�� � ej�M��H���gjg

(12)

and also

� � min
h�n�

max
��I

fW ���jimagfAd���e
�j�� � ej�M��H���gjg

(13)

makes it very easy to implement. The difference between
the criterion of equation (11) to the criterion of equations
(12) and (13) is in the shape of the range of the allowed
error. If we consider Hd��� as a line in a 3 dimensional
space, where the axes are �, and the real and imaginary
components of Hd���, then equation (11) describes a round
”tube” with a radius of ��W ��� around that line. That tube
is the volume in which we allow H��� to be. If H��� is in
that ”tube”, the weighted error W ���jA���e�j��M����� �
H���j is smaller than or equal to �. Equations (12) and
(13) describe a similar volume having a square shaped cross
section instead of the round cross section of equation (11).

Splitting the original criterion to two parts, the real part
and the imaginary part, immediately brings us to a simple
procedure for computing the approximated filter h�n�. Since
we know from the symmetry properties of the DTFT that the
real part of H��� is the DTFT of he�n�, where he�n� is the
even part of h�n� given by

he�n� � �h�n� 	 h�M � n���� (14)

and that imaginary part of H��� is the DTFT of ho�n�,
where ho�n� is the odd part of h�n� given by

he�n� � �h�n�� h�M � n���� (15)

we can design the even part he�n� according to equation
(12), and the odd part ho�n� according to equation (13) sep-
arately. Looking carefully on equations (8), (9) and the
Parks-McClellan algorithm, we conclude that we should use
the Park-McClellan algorithm with new specifications as in
equations (16) and (17) below:

� � min
he�n�

max
��I

fW ���jAd��� cos���� �Ae���jg (16)

� � min
ho�n�

max
��I

fW ���jAd��� sin�����Ao���jg (17)

where the algorithm is searching for a symmetric (type-
I or II) filter according to equation (16) and for an anti-
symmetric (type-III or IV) filter according to equation (17).
Ae��� is the amplitude response of the symmetric filter,
without the e�j�M�� phase factor, i.e.,

He��� � Ae���e
�j�M�� (18)

Similarly,Ao��� is the amplitude response of the anti-symmetric
filter, without the e�j��M������� phase factor, i.e.,

Ho��� � jAo���e
�j�M�� (19)

The final filter in the frequency domain is given by

H��� � He��� 	Ho��� (20)

and in the time domain by
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h�n� � he�n� 	 ho�n� (21)

The final filter does not have a linear phase. However,
its phase is almost linear and so we call it an Almost Lin-
ear Phase (ALP) FIR filter. We can increase the number of
coefficients and change the weighting function in order to
attenuate the deviation from linear phase. Note that for a
given number of coefficients, the resulting filter is optimal
in the sense of equations (12) and (13).

3. EXAMPLES

We give below two examples of ALP filters having 6 coef-
ficients. The desired Ad��� of the filters is the amplitude of
the frequency response of a given filter
href �n� � ������������� ����� �����������������, and
is shown in figure 1. In that figure we also see the ac-
tual jH���j of two ALP filters designed to be optimal and
have delays of � � �����
 and � � ����
. These filter
were found using an exhaustive search with a relatively low
resolution of 0.005 in the coefficients values without any
weighting function for he�n� and with a weighting function
of 
� for � � ��� �����, decreasing linearly to �� at � �
��
� and further to � at � � �, for ho�n�. We also forced
He��� to be �, i.e.,

PM
n�� he�n� � �. For � � �����
 we

found the values of:
he�n� � ������
�����
�� ���

� ���

�����
�������
�,
ho�n� � �������� ����
� ����
������
������
� ������and
so h�n� � ������
������
� ������ ��
��������
� ����
�.
For � � ����
 we found the values of:
he�n� � ������
������
� ������ �����������
������
�,
ho�n� � �������� ���
�� ����
������
�����
�� ������and
so h�n� � �����

������
� ����
� ���

������
� ����
�.

The resulting phase of the two filters, compared to the
desired phase is depicted in figure 2.

The group delay, compared to the desired group delay,
i.e., M�� 	 �, is shown in figure 3.

We see that the magnitude of the acquired filters is pretty
close to the desired filter. We also see that the resulting
phase is almost linear with alternations of the group delay
near the desired value along most of the frequency axis.

4. CONCLUSION

In this paper we had shown a simple procedure for design-
ing minimax optimal Almost Linear Phase FIR filters hav-
ing an arbitrary fractional delay. The procedure is using
the regular design methods for designing Generalized Lin-
ear Phase FIR filters. It is based on minimax criterion which
is applied separately to the real and imaginary parts of the
desired filter in the frequency domain, thus, producing the
even and odd parts of the approximated filter separately.
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Fig. 1. jHd���j (dotted line) vs. jH���j for � � �����

(solid line) and for � � ����
 (dashed line)
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Fig. 2. Phase of H��� for � � �����
 (solid line) and for
� � ����
 (dashed line) vs. the desired phase (dotted lines)
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Fig. 3. The group delay of H��� for � � �����
 (solid
line) and for � � ����
 (dashed line) vs. the desired delay
(dotted lines)
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