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ABSTRACT 
 

The exploitation of semantic information in videos is 
difficult because of the large difference in representations, levels 
of knowledge and abstract episodes. Traditional image/video 
understanding and indexing is formulated in terms of low-level 
features describing image/video structure and intensity, while 
high-level knowledge such as common sense and human 
perceptual knowledge are encoded. This paper attempts to bridge 
this gap through the integration of image/video analysis 
algorithms with multi-level semantic network to interpret the 
baseball video. 

 
1 INTRODUCTION 

 
Recently, a large amount of digital media including image, 

audio, video, streaming video clips, panorama images and 3D 
graphics have been created. We need a flexible and scalable way 
to manage the mass media of which the digital video has been 
widely accepted as the most accessible media. The MPEG-7 has 
tried to standardize the media access methods based on its 
content. The video indexing and retrieval is a useful query tool 
for us to access the media, which consists of automatic 
classification, summarization and understanding of the video.  

 
Traditionally, the video indexing and retrieval researches 

have focused on the paradigm of query-by-example (QBE) [1,2]. 
The ability to query with key-words or key-phases (semantic) 
instead of examples has motivated the semantic video indexing. 
However, the difficulty in such a system that supports semantic 
retrieval using keyword lies in the gap between low-level media 
features and high-level concepts. Recently, there have been some 
efforts to bridge the gap, Naphade et al. [3] propose a novel 
probabilistic framework (multijects and multinets) for semantic 
indexing and retrieval in digital video. 

 
Vasconcelos et al. [4] introduce the Bayesian architecture 

for content characterization and analyze its potential as a tool for 
accessing and browsing video database on a semantic basis. The 
Bayesian Belief Network (BBN) is a directed acyclic graph, 
which has been proved to be an effective knowledge 
representation and inference engine in artificial intelligence and 
expert system [5]. Ferman et al. [6] employ Hidden Markov 
Model (HMM) and Bayesian Belief Networks (BBNs) at various 
stages to characterize the content domain and extract the relevant 
semantic information. Chang et al. [7] develop a classification 
scheme based on BBNs, which models the interaction of multiple 
classes at different levels of multi-media. A Bayesian network 
based method for semantic object extraction in images was also 
proposed for object detection and tracking [8] and semantic 
interpretation [9]. 
 

Similar to [4,7~9], we propose a multi-level Bayesian 
Belief Network (BBN) for event interpretation in the baseball  

 
 

 
video. The input video contains some rich low-level information 
such as spatial and temporal information. Based on the low-level 
information and the inferring processes, the BBN will infer the 
high-level semantic of the video. Different from the previous 
researches, this paper proposes a semantic-based multi-level 
Bayesian Network that can be used to bridge this gap between 
the low-level image information and high-level semantic 
meaning through BBN inference engine. 
 

2 EXTRACT THE LOW-LEVEL FEATURE 

 For any video retrieval, summarization or categorization 
problem are always based on the low-level information analysis 
and the high-level inference of the digital video database. For 
video understanding, it is important to extract the low-level 
evidences, which consist of the object motion, colors, textures 
and the panning motion of the camera. 
 

1) Scene Change Detection. To represent a sequence of 
frames captured from a unique and continuous record from 
a camera. Adjacent frames of the same shot exhibit 
temporal continuity. 

2) Texture. The Gray-Level Co-occurrence Matrix (GLCM) is 
used to capture the spatial dependence of gray-level region. 
The Edge Histogram Descriptor (EHD) is also applied to 
describe the spatial distribution of edges, which is useful 
for matching image even when the underlying texture is not 
homogeneous [11]. 

3) Color. We use the CIE-YUV color space to analyze the 
color information, which can be used as a low-level feature. 
A dominant color and its percentage value will also be 
calculated. 

4) Motion. The motion information consists of two cases: (i) 
zooming (ii) panning. To test the effect of zooming and 
panning for video sequence, we apply the method 
mentioned in [10]. They replaces the time consuming 
calculation of 2-dimensional m ×n picture elements with 
that of two one-dimensional vectors. 

5) Moving Object Segmentation. The moving object region 
and background region are separated before the feature 
extraction such as texture, color and motion information. 
Here, we assume that the moving objects in complex 
background are somehow identifiable by their edge 
boundaries. Usually, the edge information is too noisy to be 
applicable for image analysis system, and most of the edge 
information is redundant. We assume that the objects are 
moving, and the background scene is complex but 
stationary. The results of the segmentation processes are 
illustrated in Figure 1. 
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Figure 1. The segmentation (a) original video; (b) edge image (c) 
after accumulated + closing operation image; (d) result of b AND 
c; (e) after closing d and rebuild; (f) after noise removal + region 
growing. 

3 BAYESIAN BELIEF NETWORK 

 For semantic understanding of the input video sequence, 
we demonstrate that BBN can be applied to the specific video to 
extract the corresponding semantic contents. Bayesian Belief 
Network (BBN) has been proved to be an effective statistical 
model for knowledge representation and inference. BBN is a 
direct acyclic graph representing the causal/relevance 
dependencies between variables, which are represented with the 
conditional probabilities. In BBNs, variables are used to 
represent events and/or objects in the world. We may integrate 
prior information about dependencies between variable and 
propagate the impact of evidence on the probabilities of 
uncertain outcomes. 
 
 BBN process has been proved to be a powerful 
mechanism to model the incomplete data and the reasoning in 
terms of some quantity measurements. In BBN, direct arcs 
between variables represent conditional dependencies. When all 
the parents of a given variable A are instantiated, that variable is 
said to be conditionally independent of the remaining variables, 
which are not descendants of A. 
 

Assume a Bayesian network for a set of variables X={x1, 
x2,…, xn}, a set of local probability distributions are associated 
with each variable. The network structure S is a directed acyclic 
graph. The nodes in S are in one-to-one correspondence with the 
variables X, xi denotes both the variable and its corresponding 
node, and Pai denotes the parents of node xi in S as well as the 
variables corresponding to those parents. Using the chain rule, 
we may express the joint probability distribution for X as 

 
 
 
 
Therefore, a complicated joint probability distribution can be 
reduced to a set of conditional probability and a prior probability. 
 
 Inference, or model evaluation, is the process of updating 
probabilities of outcomes based upon the relationships in the 
model and the evidence known about the situation at hand. When 
a Bayesian model is constructed, the user applies evidence about 
recent events or observations. This knowledge is applied to the 
model by “instantiating” or “clamping” a variable to a state that 
is consistent with the observation. Instantiating occurs when the 
state of a variable is known (i.e., hard evidence). Then the 
mathematical mechanics are performed to update the 
probabilities of all the other variables that are connected to the 
variable representing the new evidence. 

 

4. THE PROPOSED FRAMEWORKS 

Here, we propose a modeling framework, which supports 
an inference of unobservable concepts based on their relevance 
with the observable evidences. Given evidences as the input, the 
statistical model-based classifiers and Semantic Network (SN) 
may infer certain high-level concepts. We develop several SNs to 
model the different semantic events in the baseball video (see 
Figure 2).  

(a)     (b)          (c) 

(d)     (e)          (f) 
 

 
(a)         (b) 

 
 
 
 
 
Figure 2. Five video shots with different semantics; (a) overview, 
(b) runner snapshot, (c) defending view, (d) pitching view; (e) 
batter snapshot. 

(c)      (d)     (e) 

 
We apply the BBN training procedure on the SNs, and 

then use the SNs to interpret the semantic meanings of different 
events in the video. Given a video in a specific domain, our 
system may extract the low-level evidences and then translate the 
input video into high-level semantic meaning. Specific domains 
contain rich spatial and temporal transitional structures. For 
example, in baseball videos, there are only a few recurrent views, 
such as pitching, close-up, home plate, battering, crowd etc. Here, 
we develop several SNs that are used to model the mid-level 
semantic of baseball video such as view, field, zooming, 
regular-panning, fast-panning. 

 
The basic level of the framework consists of several 

different image analyzers. For instance, the object analyzer finds 
the existence of the main object, the objects’ sizes and number, 
whereas the texture analyzer describes the background in terms 
of the texture entropy, and edge histogram. Based on the 
extracted low-level information, the SN “View” describes the 
input video as distant view or close-up view, whereas the SN 
“Field” infer the semantic concept of the input video as infield 
or outfield. 

 
In Figure 3, the semantic concept View is modeled by a 

SN connecting four low-level evidences: Object-number, 
Main-object-size, Texture-entropy, Edge-histogram. The latter 
two evidences are denoted by two nodes, of which the 
corresponding states indicate the certainty of the specific texture 
information obtained from texture-analyzer. These low-level 
evidences are connected to some image analyzers, such as 
texture-analyzer, object-analyzer and color-analyzer. The image 
analyzers are described by square blocks, which provide the 
low-level information. 
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The Object-Number and Main-Object-Size are significant 

evidence to infer the View. If the evidence of a large 
Object-Number is obvious then it may strongly support the 
possibility that node View favors the distant-view rather than the 
close-up view. Similarly, if the evidence of a large 
Main-object-size is obvious then the node View will indicate a 
close-up view rather than a distant-view.  
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 Figure 3. A SN for the semantic concept “View”. 
 
Figure 4 illustrates another SN that may be used to infer 

the mid-level semantic Field. The texture-analyzer provides 
low-level information to two low-level semantic nodes, 
edge-histogram and texture entropy, which are shared by SN 
Field and SN View. The color analyzer may provide two new 
low-level evidences: Background-Dominant-Color (BDC) and its 
percentage value (BDC_P) which are required for inferring the 
mid-level semantic Field. The certainty of either outfield or 
infield is described by the status of the node Field. The image 
analyzer checks every frame of the video sequences. If the BDC 
indicates toward green color, then Field favors the outfield rather 
than the infield. 

 
 
 
 
 
 
 
 

Figure 4. A SN for the semantic concept “Field”. 
 

The mid-level semantic concept related to motion activity 
is described by the SN shown in Figure 5. The displacement 
vector (DV) information can be used for SN to demonstrate the 
certainty of three different mid-level semantics: fast panning, 
regular panning and zooming. 
 
 
 
 
 
 
 
 
Figure 5. A SN for the semantics concepts “fast-panning”, 
“regular-panning” and “zooming”.  
 

On the top of the multi-level BBN hierarchy are the root 
nodes representing the certainty of the six different categories: 
Event-Occur, Overview, Runner, Defense, Pitching and Batter. 
The upper level of the multi-level network is shown in Figure 6 
from which we may infer the highest-level concept of the root 
node from the input video sequence. Each input video may 
activate more than one root node (with high certainty after BBN 
inference). Each root node is connected to several mid-level 
nodes representing the semantic concepts. 

 
 
 
 
 
 
 

Figure 6. A SN for the mid-level semantics. 

Here, we use six mid-level nodes to represent semantic 
concepts such as ACV (Aloud Cheering Voice), fast panning, 
regular panning, zooming, view, and field. These semantic 
concepts originate from the instinct response of the viewers of 
the sports program. Each root node represents the category of a 
certain video shot. The linkage characteristics of the SN are also 
manually determined, and the probabilities of these links can be 
obtained by the BBN training procedure. 

 
The high-level semantic, which is considered as indirect 

aggregations of lower level information, may also be represented 
by the SN provided that they can be inferred directly to the 
semantic of input video. Figure 7 illustrates the SN for video 
event interpretation of the baseball video. The overall structure 
consists of three layers: the category layer, the mid-level 
semantic layer, and the low-level feature layer. 

Figure 7. An overall SN for baseball video. 
 
 

5. IMPLEMENTATION 
 

To apply the BBN technology to our multi-level SN for 
baseball video semantic event interpretation, we need to consider 
the following steps: 

 
1. Formulate problem in terms of creating a set of variables 

representing the distinct elements of the situation being 
modeled.  

2. For each such variable, assign the set of mutually exclusive 
states or outcomes that it may generate. 

3. Settle the causal dependency relationships between the 
variables. This involves creating arcs (lines with arrowheads) 
linking from the parent (influencing) node to the child 
(influenced) node. 

4. Assess the numeric probabilities for each variable and arc. 
Based on the case set given in the training data as well as 
using the gradient-descent algorithm to compute the 
conditional distribution probability for each node. 

 
    Since the conditional probability and the prior probability 
for each node are known, we can utilize the BBN model to 
understand and classify our video sources. The input video is 
analyzed by several image analyzers: such as motion analyzer, 
object analyzer, texture analyzer, and color analyzer. These 
analyzers extract the lowest-level features as the input evidence 
to BBN. Using the evidence propagation procedure from the 
low-level feature layer to the mid-level semantic layer such as 
view and field, we may further infer the high-level semantic 
category of the video sequence. 
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6. EXPERIMENTAL RESULTS 

(a) 

(b) 

 
In the experiment, we emphasize that the measurement of 

recognition rate is based on the frame unit rather than the unit of 
video shot. We have 1100 video shots selected from six different 
baseball TV programs. Each video shot consists of a sequence of 
image frames and it indicates different semantic content, 
moreover, each shot may consist of different number of image 
sequences, some of which are used for training and the others are 
used for testing.  

 
The BBN-based video understanding system may extract 

the mid-level semantic meanings given some low-level evidences, 
and it can be used to find the category of testing video shot. 
Table 1 demonstrates the performance for extracting the 
mid-level semantic feature including Field, View, Zooming, Fast 
panning and Regular panning. 

 
 

Table 1. Mid-level semantic feature 

Mid-level Semantic feature 
Training data 

(frames) 

Testing data 

(frames) 

Success rate 

(%) 

Field 12,819 4,161 85.77% 
View 17,995 7,777 80.01% 

Zooming 11,106 30,238 82.20% 
Fast Panning 10,429 27,592 79.24% 

Regular Panning 9,724 31,183 74.82% 
 
We use some testing sequences for each category and do 

the experiments for all the testing sequences, which belongs to 
the same category. We find that it is categorized correctly if the 
certainty score of the corresponding node is larger than 50%. 
However, we may also find that the scores of the other nodes 
may also be larger than 50%, which are incorrect, and it is called 
the false alarm. The testing results of detection accuracy and 
false alarm rate of each category are shown in Tables 2-1 and 
2-2.  

 
Table 2-1. Testing result for category level. 

           Input class 

Recognized class A B C D E 

Overview (A) 56 0 1 1 0 
Runner (B) 32 52 1 0 4 
Defense (C) 13 4 113 3 8 
Pitching (D) 1 6 1 66 7 
Batter (E) 4 45 0 7 58 

Total sequences 106 107 116 77 77 
 
 

Table 2-2. Experimental result for category level. 
Video Class Detection Accuracy False Alarm 

Overview 96.23% 26.79% 

Runner 97.20% 41.49% 

Defense 96.55% 28.07% 

Pitching 98.70% 38.92% 

Batter 98.70% 43.60% 
 

Figure 8a shows an example for the identified semantic 
features of the pitching scene. Figure 8b illustrates the video 
understanding results for the scene of defense. The performance 
of our system has been shown in Tables 1~2. 

 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

Figure 8. (a) The semantic interpreter, (b) The category classifier. 
 

7. CONCLUSIONS 
 

The main contribution of this paper is to model an 
inference system by constructing the relationship between 
unobservable concepts and observable concepts. We use the 
visual significance of an object as a prior and the condition 
probabilities to determine the parameters of the BBNs. Given 
some low level evidences to the BBN, which consists of links of 
nodes, the system will generate high-level semantic meaning of 
the video content. 
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