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ABSTRACT

In this study we present a method for classifying EEG
signals based on the information content of their
correlative time-frequency-space representation (CTFSR).
A support vector machine (SVM) kernel is proposed that
can be calculated in the time domain while it computes a
similarity measure in the CTFSR space. This classification
method is used in a brain-computer interface (BCI)
application.

The use of the SVM approach allows us to propose a
simple strategy for adapting the BCI to possible long term
variations in the brain activity.

1. INTRODUCTION

An electroencephalogram (EEG) is the measurement of
electrical potentials in the brain, by an array of electrodes
placed at the scalp or on the brain’s cortex. The relative
simplicity, good time resolution and non-invasiveness of
the scalp-measured EEG are the main reasons that made it
a privileged tool for monitoring brain activity in
therapeutic and neurophysiologic research. In the sequel,
we use the term EEG for a scalp-measured EEG.

Since the first experiments, there is clear evidence that
observable changes in EEG result from performing given
mental activities [1]. Under the light of this evidence it
becomes possible to conceive a communication system
between human brain and a computer, in which the
information support is the EEG pattern, voluntarily
generated by the user and independent of any muscular
activity. Such a system is called a Brain-Computer
Interface (BCI) and is the object of intense research,
mainly for people with severe motor disabilities [2].
“Think and make it happen without any movement” is a
dream that might become reality through a BCI.

A BCI is composed of three subsystems, namely signal
acquisition, signal processing and output generation.
(Figure 1)

The acquisition subsystem is responsible for the
measurement and digitization of EEG signals. These
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signals are often noisy and may contain artifacts (due to
muscular and ocular movements) that can mask the
EEG patterns generated by the user.

The signal processing subsystem is generally subdivided
into a preprocessing unit, responsible for artifact
detection, and a feature extraction and recognition unit
that determines the command sent by the user to the BCI.
This command is sent to the output subsystem, which
generates a “system answer” that constitutes a feedback to
the user who can modulate his mental activities so as to
produce those EEG patterns that make the BCI
accomplish his intents.
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Figure 1. General BCI architecture.

Figure 2 illustrates the basic scheduling of a BCI. We
define the BCI period as the average time between two
consecutive system answers and the EEG trial duration as
the amount of EEG (in terms of time) that the BCI needs
to analyze in order to generate an answer. These parame-
ters are crucial for the usability of the BCI and depend on
the brain dynamics, the type of mental activities (MAs)
used and the computation load.[2]

In this paper we focus on the recognition of EEG patterns
(associated with given MAs) by the BCI and we propose a
strategy for adapting the system to possible long term
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variations in the EEG patterns that can appear as a result

of different brain’s background activities over time.
EEG trials
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Figure 2. BCI scheduling.

2. TRENDS IN EEG ANALYSIS FOR BCI
APPLICATIONS

In the context of BCI, EEG signals were mainly analyzed
in the time, frequency, and time-frequency domains.

Most of the research groups work in the frequency
domain and extract the information characterizing mental
activities from the nonparametric and parametric spectral
representations of EEG [2]. Also, the joint spectral
properties of the EEG components are analyzed in [3] for
detecting particular emotional states.

The relationship between the time courses of the signals
coming from different electrodes serves as an indication
of motor activities in [4]. Useful information can also be
extracted from particular brain configurations that can be
interpreted in terms of brain states [5][6].

Time-frequency and time-scale representations of EEG
signals were exploited for finding those neuronal groups
that synchronize their activity as a response to a particular
stimulus (event related potentials) [7][8].

From the above considerations it can be stated that mental
activities, when mapped onto the time-frequency
representation of EEG signals, display a picture that
illustrates the cooperative activity of neuronal groups. A
possible way to explore this activity consists in analyzing
the joint time-frequency-space correlations between the
components of an EEG signal.

3. TIME-FREQUENCY-SPACE CLASSIFICATION
OF EEG TRIALS

The BCl is first presented with a set of labeled EEG trials
(training set) i.e. recorded during the performance of
known MAs, in order to build the classifier.

Let the training set be " = {(Xi,y,.) ; 1<i< L} where y, is

the label of the EEG trial X, .
For our purposes we consider the two-class classification
problem, ie.y, € {—1,+1}. Multi-class classification can

be done with multiple pairwise comparisons. The binary
classification problem is solved here using the support
vector machine (SVM) approach [9].

The goal is to determine a mapping ®@ , from the EEG trial
space X into a feature space F (endowed with an inner
product) such that the classes can be separated by a
hyperplane in F.

Therefore, the decision function ffor an EEG trial X< X is
[ X {-1+1}

X—)f(X)zsign(<d)(X),w>+b) ; weF,beR

The SVM theory has established that one does not need to
explicitly calculate the mapping CI)(-) if there is a kernel

function k (+,+)such that

(@(x),0(%))=k(x.X) (1)
Some classical types of kernels satisfying the above
property are: the polynomial, radial Gaussian and sigmoi-
dal kernels [9].
In this study we propose to map X on the space F, defined
by the correlative time-frequency-space representations
(CTFSR) of the elements in X. The CTFSR choice is
motivated by the promising results obtained in previous
works [10].
The CTFSR of an EEG trial X(?), composed of the signals
measured at N electrodes, is an Nx/N matrix defined as.
Axl,xl (9’ T) Axl,xN (991-)
Dy, (0.7) = 2

AxN,xN (03 T)

xN(t)]T, (-)Tis the transpose

AXN,.\'] (0’ T)
where X (1) =[x, (¢)
operator, dandr are the frequency and time lags respec-
tively, and 4, ,(0,7) =[x, (t+7/2)-x,*(t—7/2)e dt
is the cross correlative time-frequency function (also
called ambiguity function [11]) between x,, () and x,(¢) .
We define the kernel function between two EEG trials X
and X as

K(x.%)=1,- [0, (0.0)0 (0.5)d0dr-1, )
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where 1, is a 1xN real matrix with unit components, and

(-)H is the Hermitian operator.
Substituting Eq. (2) into Eq. (3) we get.

k(X X) =1y [[ X (0 0)- X7 (0) X (0) X" (4 7) dud 1,

The last result shows that we do not need to explicitly

compute @, and (D( as only k(X,)N() matters.

)
The estimates for weFand beRare found by
minimizing the regularized risk R, which depends on the

classifier complexity and the empirical risk R, :

|1
(w,b)=arg mm[;(w, w)—vp+ Remp}
weF,beR (4)
1 L
R, =Z;max{0,p—y[ (X))

The support vectors (SVs) are those training points for
whichy, - f(X,)< p, pis called the loss parameter, v is
a lower bound on the fraction of training points that are
SVs[9].

The results in [9] show that w is a linear combination of
{y,-®(X,);1<i<L}

W:Zaiyi'(D(Xi) (5)

and that solving Eq. (4) is equivalent to find

L
max I:_% Zl x5 %, Y, yr’zk(X"' s ﬂ

i, =

subject to constraints
L

The offset b and the loss parameter p can be found using

v ((w@(X))+b)=p  whena, E(O’%j

A key requirement in BCI applications consists in the
regular adaptation of the classifier to the possible changes
in user’s mental activities [2]. As only the SVs determine
the classification parameters (w and b) we can easily up-
date them by including the old SVs in a new training set.

4. BCI IMPLEMENTATION

Three types of MAs were used: imagination of left (MA1)
or right (MA2) index finger movements and a baseline
(MA3) where the subject can imagine anything except
MAT1 or MA2. The goal was to allow the user to control

the movement, to the left or to the right, of a cursor on a
computer screen.

Our BCI implementation can be explained in terms of
three states: the neutral state in which the BCI whether
recognizes MA3 or cannot recognize any known MA, the
active state in which the BCI recognizes MA1 or MA2
and answers with an action and a transition state between
the above mentioned states.

State changes occur at a rate defined by the BCI period,
and are determined by the activation of two Boolean
variables: detection (B1) and confirmation (B2). B1 is true
when MA1 or MA2 are recognized and B2 is true when
Bl is true and if the M previously recognized MAs are
equal to the currently recognized MA (Figure 3). The
parameter M (latency time) depend on the rate of false
positive recognitions, although it would not be larger than
two seconds.

Active |\«
State / i State

Transition

Figure 3. BCI states.

The set of BCI parameters are summarized in Table 1.

BCI period

EEG trial duration
Classification parameters
Latency time

Table 1. BCI parameters.

The optimal values for these parameters are determined
during several training sessions and continuously updated.

5. RESULTS AND DISCUSSIONS

Two male right-handed subjects participated in six
twenty-minute sessions. The signals from electrodes: Fpl,
Fp2, C1, C3, C4, C2, P3 and P4 of the 10-20 International
System [1] were measured.

The labeled EEG trials recorded in the first training
session were used for estimating a preliminary set of
classification parameters. In the next training sessions
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continuous feedback was provided to the subjects,
indicating if the MA they were requested to perform was
successfully recognized or not. The feedback of a session
was provided using the updated classification parameters
of the precedent session.

The first five sessions were devoted to training. In the last
session, the subjects were asked to move the cursor in a
2D maze so as to reach one of the exit doors.

Each session was preceded by a short calibration period in
which the BCI was adjusted to the subject. In the
meantime, the subject could see a representation of his
EEG signals mapped onto a 2D or 3D scene in order to
get familiarized with the system.

After the first training session, the BCI period and the
EEG trial duration were chosen among three possible
alternatives depending on the classification error
(Table 2). According to these results the BCI period and
the EEG trial duration were set to 250 and 500
milliseconds respectively.

0.125/0.25s | 0.25s/0.5s 0.5s/1s
Subject 1 52 % 42 % 46 %
Subject 2 48 % 38 % 45 %

Table 2. Classification error rate in the first training session
for different values of BCI period/EEG trial duration

In Figure 4, we report the true and false positives rates of
the last four sessions of training. As it can be observed the
true positives rate increased over the sessions for both
subjects reaching 86 % for subject 2.

The false positive rate is not larger than 33 % for subject 1
and 30 % for subject 2. As this result is not good enough
we set the latency time to one BCI period (i.e. 250
milliseconds), so that the system waits a confirmation of
one EEG trial before executing any action. This parameter
can reach the suitable value of zero if the user is able to
decrease his false positives rate below 10 %. Thus, we can
reward the user if he improves his ability to use the BCIL.

TS2 False positive rate Vs. True positive rate for
training sessions (TS) from two to five
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Figure 4. Evolution of the false positives vs. true positives
rate for both subjects.

6. CONCLUSIONS

In this paper we presented a method for classifying EEG
trials, based on the information content of their
time-frequency-space representation. The dimensionality
of this representation that makes it difficult to manipulate
[10] was avoided using SVM concepts and a kernel that
can be calculated in the time domain. We also proposed a
method for easy updating of the classifier parameters by
adding the old support vectors to the next training set.
Finally, we introduced a BCI implementation that can be
adapted to the user performance and brain dynamics.

As the immediate goal of our research is to provide
control of a cursor in a 2D environment, we need to
explore the recognition of at least five MAs. Since part of
the success of a BCI depends on the user himself the
feedback strategy needs to be carefully designed by taking
into account physiological and psychological aspects.
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