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ABSTRACT

We present a multimodal interface that learns words from natural
interactions with users. The system can be trained in unsupervised
mode in which users perform everyday tasks while providing nat-
ural language descriptions of their behaviors. We collect acoustic
signals in concert with user-centric multisensory information from
non-speech modalities, such as user’s perspective video, gaze posi-
tions, head directions and hand movements. A multimodal learn-
ing algorithm is developed that firstly spots words from contin-
uous speech and then associates action verbs and object names
with their grounded meanings. The central idea is to make use of
non-speech contextual information to facilitate word spotting, and
utilize temporal correlations of data from different modalities to
build hypothesized lexical items. From those items, an EM-based
method selects correct word-meaning pairs. Successful learning
has been demonstrated in the experiment of the natural task of
“stapling papers”.

1. INTRODUCTION

The next generation of computers is expected to interact and com-
municate with users in a cooperative and natural manner when
users carry out everyday activities. Towards this end, a truly intel-
ligent human-machine interface should be able to understand what
people are doing and their intentions, and perform helpful speech
acts, such as confirming user requests, answering questions and
providing related information through speech. In this way, com-
puters will be seamlessly integrated into our everyday lives and
work as intelligent observers and human-like assistants.

To progress towards this goal, computers need to know the
sound patterns of spoken words and understand their meanings.
Most existing speech recognition systems rely on purely acoustics-
based statistical models, such as hidden Markov models and hybrid
connectionist models. These systems have two inherent disadvan-
tages. First, they require a training phase in which large amounts
of spoken utterances paired with manually labeled transcriptions
are needed to train the model parameters. This training proce-
dure is time-consuming and needs human expertise to label spoken
data. Second, these systems transform acoustic signals to symbolic
representations (texts) without regard to their grounded meanings.
Humans need to interpret the meanings of these symbols based on
their own knowledge. For instance, a speech recognition system
can map the sound pattern “car” to the string “car”, but it does not
know what this string means.

To overcome the above shortcomings, a few recent studies pro-
posed several unsupervised methods for learning words from lin-

guistic and contextual inputs. Among them, the work of Roy [1]
is particularly relevant to our work. He proposed a computational
model of infant language acquisition, which utilizes temporal cor-
relation of speech and vision to associate spoken utterances with
a corresponding object’s visual features. The model has been im-
plemented to process a corpus of audio-visual data from infant-
caregiver interactions. Our work differs from his in that we focus
on building a multimodal learning interface that is grounded in
naturally-occurring multisensory information in everyday activi-
ties. Our learning method incorporates an extensive description of
gaze, head and hand movements as well as visual data to provide
contextual information when spoken words are uttered.

This paper describes a multimodal learning system that is able
to learn perceptually grounded meanings of words from user’s ev-
eryday activities. The only requirement is that users need to de-
scribe their behaviors verbally while performing those day-to-day
tasks. To learn a word (shown in Figure 1), the system needs to
discover its sound pattern from continuous speech, recognize its
meaning from non-speech context, and associate these two. The
range of problems we need to address in this kind of unsupervised
word learning is substantial, so to make concrete progress, this
paper focuses on how to associate visual representations of objects
with their spoken names and map body movements to action verbs.
Our work suggests a new trend in developing human-computer in-
terfaces that can automatically learn words by sharing user-centric
multisensory information.

ay eh m r iy hh ch in ng uh

ow v axr eh n d pcl p iy kcl k

ih ng ah hh p ae h iy sh iy s

ow f p ey pcl p hh er eh n  em

pcl p uh dcl d ih ng th eh p ay

p er l ay m d uh p s t ey p l in

ng eh p ey pcl p er eh hh gcl

g ow ih ux hh f ow l d dh eh p

ey p er r z p l ey z  ch eh m eh

t th eh s b ow t h ih er ih.


f ow l d


p iy kcl k

ih ng ah hh p


s t ey p l in

ng


p l ey z


l ay m d uh p


ay eh m r iy hh ch in ng uh

ow v axr eh n d pcl p iy kcl k

ih ng ah hh p ae h iy sh iy s

ow f p ey pcl p hh er eh n  em

pcl p uh dcl d ih ng th eh p ay

p er l ay m d uh p s t ey p l in

ng eh p ey pcl p er eh hh gcl

g ow ih ux hh f ow l d dh eh p

ey p er r z p l ey z ch eh m eh

t th eh s b ow t h ih er ih.


I am reaching over

and picking up a few

sheets of paper. I am

putting the paper

lined up. Stapling the

paper. I am going to

fold the papers. Place

them at  the spot

here.


phoneme sequence

picking up
 lined up
 paper


stapling


fold


place


p ey pcl p hh er


p ey pcl p er


p ay

p er


p

ey per r z


Fig. 1. The problems in word learning. The raw speech is firstly
converted to phoneme sequences. The goal of our method is to discover
phoneme substrings that correspond to the sound patterns of words and
then infer the meanings of those words from non-speech modalities.

2. A MULTIMODAL LEARNING INTERFACE

In typical scenarios, a user performs everyday tasks while describ-
ing his/her actions verbally. To learn words from user’s spoken de-
scriptions, three fundamental problems needed to be addressed are:
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(1) action recognition and object recognition to provide grounded
meanings of words encoded in non-speech contextual information,
(2) speech segmentation and word spotting to extract the sound
patterns that correspond to words, (3) association between spoken
words and their grounded meanings.

2.1. Recognition of Actions and Objects
The non-speech inputs of the system consist of visual data from
a head-mounted camera, head and hand positions in concert with
gaze-in-head data. Those data provide a context in which spoken
utterances are produced. Thus, the possible meanings of spoken
words that users utter are encoded in this context, and we need to
extract those meanings from raw sensory inputs. Specifically, the
system should spot and recognize actions from user’s body move-
ments, and discover the objects of user interest.

We observe that in accomplishing well-learned tasks, the user’s
focus of attention is linked with body movements. In light of this,
our method firstly utilizes eye and head movements as cues to es-
timate the user’s focus of attention. Attention, as represented by
gaze fixation, is then utilized for spotting the target object of user
interest. Attention switches are calculated and used to segment a
sequence of hand movements into action units which are then rec-
ognized by Hidden Markov Models(HMMs). The results are two
temporal sequences of grounded meanings as depicted by the box
labeled “contextual information” in Figure 2. Further information
about attentional object spotting and action recognition can be ob-
tained from [2, 3].

2.2. Speech Processing
We describe our methods of phoneme recognition and phoneme
string comparison in this subsection, which provide a basis for fur-
ther processing. Detailed technical descriptions of algorithms can
be obtained from [4].

2.2.1. Phoneme Recognition
We have implemented an endpoint detection algorithm to segment
the speech stream into several spoken utterances. Then the speaker-
independent phoneme recognition system developed by Robinson
[5] is employed to convert spoken utterances into phoneme se-
quences. The method is based on Recurrent Neural Networks
(RNN) that perform the mapping from a sequence of the acous-
tic features extracted from raw speech to a sequence of phonemes.
The training data of RNN are from the TIMIT database — pho-
netically transcribed American English speech — which consists
of read sentences spoken by 630 speakers from eight dialect re-
gions of the United States. To train the networks, each sentence is
presented to the recurrent back-propagation procedure. The target
outputs are set using the phoneme transcriptions provided in the
TIMIT database. Once trained, a dynamic programming match
is made to find the most probable phoneme sequence of a spo-
ken utterance, for example, the boxes labeled “phoneme strings”
in Figure 2.

2.2.2. Comparing Phoneme Sequences
In our system, the comparison of phoneme sequences has two pur-
poses: one is to find the longest similar substrings of two phonetic
sequences (word-like units spotting described in Subsection 2.3.1),
and the other is to cluster segmented utterances represented by
phoneme sequences into groups (word-like units clustering pre-
sented in Subsection 2.3.2). In both cases, an algorithm of the
alignment of phoneme sequences is a necessary step. Given raw
speech input, the specific requirement here is to cope with the
acoustic variability of spoken words in different contexts and by

various talkers. Due to this variation, the outputs of the phoneme
recognizer previously described are noisy phoneme strings that are
different from phonetic transcriptions of text. In this context, the
goal of phonetic string matching is to identify sequences that might
be different actual strings, but have similar pronunciations.

To align phonetic sequences, we first need a metric for mea-
suring distances between phonemes. We represent a phoneme by
a 15-dimensional binary vector in which every entry stands for a
single articulatory feature called a distinctive feature. Those dis-
tinctive features are indispensable attributes of a phoneme that are
required to differentiate one phoneme from another in English.
We compute the distance between two individual phonemes as the
Hamming distance. Based on this metric, a modified dynamic pro-
gramming algorithm is developed to compare two phoneme strings
by measuring their similarity. A similarity scoring scheme assigns
large positive scores to pairs of matching segments, large negative
scores to pairs of dissimilar segments, and small negative scores to
the operations of insertion and deletion to convert one sequence to
another. The optimal alignment is the one that maximizes the ac-
cumulated score. See [4] for further information about our method
of phoneme sequence comparison.

2.3. Word Learning
In this subsection, we describe our approach to integrating multi-
modal data for word acquisition. We divide this problem into two
basic steps: speech segmentation shown in Figure 2 and lexical
acquisition illustrated in Figure 4.
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Fig. 2. Word-like unit segmentation. Spoken utterances are categorized
into several bins that correspond to temporally co-occurring actions and
attentional objects. Then we compare any pair of spoken utterances in each
bin to find the similar subsequences that are treated as word-like units.

2.3.1. Word-like Unit Spotting
Figure 2 illustrates our approach to spotting word-like units in
which the central idea is to utilize non-speech contextual infor-
mation to facilitate word spotting. The reason we use the term
“word-like units” is that some actions are verbally described by
verb phrases (e.g. “line up”) but not single action verbs. The inputs
are phoneme sequences( �����������	��
�����
 ) and possible meanings of
words (objects and actions) extracted from non-speech perceptual
inputs. Those phoneme utterances are categorized into several bins
based on their possible associated meanings. For each meaning,
we find the corresponding phoneme sequences uttered in temporal
proximity, and then categorize them into the same bin labeled by
that meaning. For instance, ��� and ��
 are temporally correlated
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with the action “stapling”, so they are grouped in the same bin
labeled by the action “stapling”. We need to point out here that,
since one utterance could be temporally correlated with multiple
meanings grounded in different modalities, it is possible that an
utterance is selected and classified in different bins. For example,
the utterance “stapling a few sheets of paper” is produced when
a user performs the action of “stapling” and looks toward the ob-
ject “paper”. In this case, the utterance is put into two bins: one
corresponding to the object “paper” and the other labeled by the
action “stapling”. Next, based on the method described in Sub-
section 2.2.2, we compute the similar substrings between any two
phoneme sequences in each bin to obtain word-like units. Figure 3
shows an example of extracting word-like units from the utterance
� � and � 
 that are in the bin of the action “folding”.

eh m hh gcl g ow in ng m t uh f ow l d th hh pcl p ey p er


f l ow dcl d ih ng t eh pcl p ay p hh er ih l ay kcl k th ix


u
2
: I am going to fold the paper


u
4
: folding the paper like this


Fig. 3. An example of word-like unit spotting. The similar substrings
of two sequences are /f ow l d/ (fold), /f l ow dcl d/ (fold), /pcl p ey p er/
(paper) and /pcl p ay p hh er/ (paper).

2.3.2. Word-like Unit Clustering
As shown in Figure 4, the extracted phoneme substrings of word-
like units are clustered by a hierarchical agglomerative clustering
algorithm that is implemented based on the method described in
Subsection 2.2.2. The centroid of each cluster is then found and
adopted as a prototype to represent this cluster. Those prototype
strings are associated with their possible grounded meanings to
build hypothesized lexical items. Among them, some are correct
ones, such as /s t ei hh p l in ng/ (stapling) associated the action
of “stapling”, and some are incorrect, such as /s t ei hh p l in ng/
(stapling) paired with the object “paper”. Now that we have hy-
pothesized word-meaning pairs, the next step is to select reliable
and correct lexical items.
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Fig. 4. Word learning. The word-like units in each bin are clustered
based on the similarities of their phoneme strings. The EM-algorithm is
applied to find lexical items from hypothesized word-meaning pairs.

2.3.3. Multimodal Integration
Next, we utilize the co-occurrence of multimodal data to select
meaningful semantics that associate visual representations of ob-
jects and body movements with spoken words. We take a novel
view of this problem as the word correspondence problem in ma-
chine translation. For example, body movements can be looked
as a “body language”. Thus, associating body movements with
action verbs can be viewed as the problem of identifying word
correspondences between English and “body language”. In light
of this, we apply a technique from machine translation to address
this problem. We model the probability of each word as a mix-
ture model that consists of the conditional probabilities of each
word given its possible meanings. In this way, the Expectation-
Maximization(EM) algorithm is employed to find the reliable as-
sociations of spoken words and their grounded meanings that will
maximize the probabilities.

We assume that every meaning � can be associated with a
word-like phoneme string � . We can find the word

�� that is as-
sociated with the meaning � by choosing the one that maximizes��� ��� �	� . Let N be the number of meanings, 
�� be the num-
ber of words in the 
 - ��� meaning, and let � � represent a set of
the possible assignments:

� ��� � ����� � ������� ����������� , such that ����� as-
signs the word ����� to the meaning �	� . � � ����� � is the probability
that the meaning � � is associated with a specific word � ��� and� � �����!� �	�!� is the probability of obtaining the word ����� given the
meaning �	� . We use the model similar to that of Duygulu et al.
[6]:

� � �"� �	�$#
%&
�(' �

� �&
��' � �

� ����� �)� � �����!� �	�!� (1)

We can estimate � � �����*� �	�+� from data directly and the only in-
complete data is � � �!��� � . The remaining problem is to find the
maximum likelihood parameter:,� � �!�-#/.10�2435.16798;:1< � � ��� � �=� � �>���?#@.10�2435. 6798;:1<BA : � � ������� � �=� � �>���

(2)
The EM algorithm can be expressed in two steps. Let � � �!��C DFE

be our estimate of the parameters at the G th iteration. In E-step:
we compute the expectation of the log-likelihood function:H � � � �!��� � � �>� C DFE �B# IKJ L)M1NO� � ���P�"� � �Q� � �!� C DFE �SR

#
%
A�(' �

���
A��' � �

� � ��� � � ��� �P� � �Q� � �!� C DFE �UT
L)M1NVJ � � ����� �)� � �����*� �	�>�SR (3)

In M-step: let � � �!��C D�W � E be that value of � � �!� which maxi-
mizes

H � � � �>��� � � �!�FC DXE�� :
� � �!� C D�W � E #/.10�2435.16798;:1< H � � � �!��� � � �!� C DFE � (4)

We wish to find the assignment probabilities so as to maximizeH � � � �!��� � � �!� C DFE � subject to the constraints that for each � � :� �
A��' � �

� �!���9�-#ZY (5)

Therefore, we introduce Lagrange multipliers [ � and seek an un-
constrained maximization:

� � � � �!� ��[\�-# H � � � �!��� � � �>� C DFE ��]
%
A�(' � [+�

� Y�^ � �
A�F' � �

� �����9��� (6)
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We compute derivatives with respect to the multipliers [ and the
parameters � � �>� to estimate � � �!���9� :

� � ����� �$# � � �����*� ����� �P�	� �Q� � �!�FC DFE��)� � ������� � �+�
� � ���' � � � �!����� ����� ��� ���=� � �>� C DFE �)� � �����*� �	�!� (7)

The algorithm sets an initial � � �!��� to be flat distribution and per-
forms the E-step and the M-step successively until convergence.
Then for each meaning �	� , the system selects all the words with
the probability � � � ��� � greater than a pre-defined threshold. In this
way, one meaning can be associated with multiple words. This is
because people may use different names to refer to the same object
and the spoken form of an action verb can be expressed differently.
For instance, the phoneme strings of both “staple” and “stapling”
correspond to the action of stapling. Therefore, the system is de-
veloped to learn all the spoken words that have high probabilities
in association with a meaning.

3. EXPERIMENT

We collected data from multiple sensors with timestamps. A Pol-
hemus 3D tracker was utilized to acquire 6-DOF hand and head
positions at �����
	 . A user wore a head-mounted eye tracker from
Applied Science Laboratories(ASL). The headband of the ASL
holds a miniature “scene-camera” to the left of the user’s head,
which provides the video of the scene from the first-person per-
spective. The video signals were sampled at the resolution of 320
columns by 240 rows of pixels at the frequency of 15Hz. The
gaze positions on the image plane were reported at the frequency
of �����
	 . The acoustic signals were recorded using a headset mi-
crophone at a rate of 16 kHz with 16-bit resolution.

Six users participated in the experiments. They were asked
to sit at a table and performed the task of “stapling papers” while
describing their actions verbally. Each user performed the task
six times. Figure 5 shows the snapshots captured from the head-
mounted camera when a user performed the task.

(a) (b) (c) (d) (e) (f)

Fig. 5. The snapshots of an action sequence when a user performed the
task of stapling several sheets of paper: (a) picking up papers (b) placing
them to the position close to the body (c) lining up (d) stapling (e) folding
(f) placing them to the target location.

To evaluate experimental results, we define the following three
measures: (1) Semantic accuracy is to measure the recognition
accuracy of processing non-linguistic information, which consists
of recognizing both human actions and visual attentional objects.
(2) Speech segmentation accuracy is to measure whether the be-
ginning and the end of phoneme strings of word-like units are cor-
rect word boundaries. (3) Word learning accuracy is to measure
the percentage of successfully segmented words that are correctly
associated with their meanings.

Table 1 shows the results of three measures. The recognition
rate of the phoneme recognizer we used is 75% because it does
not encode any language model and word model. Based on this re-
sult, the overall accuracy of speech segmentation is 71.6%. Natu-
rally, an improved phoneme recognizer based on a language model
would improve the overall results, but the intent here is to study the
model-independent learning interface. The error in word learning
is mainly caused by a few words (such as ”several” and “here”)

Table 1. Results of word acquisition
semantics speech word

segmentation learning
overall 92.9% 71.6% 90.2%
picking up 96.3% 73.2% 89.6%
placing 93.6% 68.9% 92.3%
lining up 73.2% 73.6% 88.9%
stapling 86.2% 72.9% 86.3%
folding 83.6% 71.5% 86.9%
paper 96.7% 70.8% 92.1%

that frequently occur in some contexts but do not have grounded
meanings. Considering that the system processes natural speech
and our method works in unsupervised mode without manually en-
coding any linguistic information, the accuracies for both speech
segmentation and word learning are impressive.

4. CONCLUSIONS
This paper presents a multimodal learning interface for word ac-
quisition. The system is able to learn the sound patterns of words
and their semantics while users perform everyday tasks and pro-
vide spoken descriptions of their behaviors. From the perspec-
tive of multimodal integration, we believe that a powerful con-
straint in multisensory data is coherence in time and space. Our
method of learning words exhibits how to capitalize on this con-
straint for word acquisition without manual transcriptions and hu-
man involvement. From an engineering perspective, our system
demonstrates a new approach to developing human-computer in-
terfaces, in which computers seamlessly integrate in our everyday
lives and are able to learn lexical items by sharing user-centric
multisensory information.
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