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ABSTRACT using audio-visual features and compared to audio-only recog-

nition performance. Both concatenated and multi-stream fusion
Audio-visual speech recognition is an area with great potential to methods are used to improve recognition performance.
help solve challenging problems in speech processing. Difficulties
due to background noises are significantly reduced by the addi-
tional information provided by extra visual features. The pres-
ence of additional speech from other talkers during recording may

be viewed as one of the most difficult sources of noise. This ith hiti . tant bl h to dat h
paper presents a study using audio-visual speech recognition f01A ougn Itis an Important problém, research 1o daté on speec

simultaneous-speaker speech recognition. The desired goal is t(gecognltlon of multiple, simultaneous speakers has been fairly lim-

separate and potentially recognize speech from several simultane'—t.ed.' This is 'T part b?catjse It IS ?n extremely difficult task. It is
ous speakers. similar to the “babble” or “cocktail” problem where speech needs

Speaker pairs from the CUAVE multimodal speech corpus are to be separated from a background of similar acoustic features, but

used in this work. Audio-visual techniques are compared against't also has the additional requirement that we desire to potentially

- . ecognize the “stream” of speech from any particular speaker. Some
speaker-independent and speaker-dependent audio-only methods . . X

= A . . work has been performed that focuses on blind signal separation
for speech recognition of individuals from these pairs. For infor-

mation on obtaining CUAVE. please visit the following web page through nonlinear means such as the use of neural networks with
. 9 P 9 pag inputs from two microphones (close-talking and omni-directional)
(http://ece.clemson.edu/speech).

to help distinguish multiple signals [5]. Although limited, these
techniques have demonstrated some success. Another difficulty
1. INTRODUCTION with testing multiple, simultaneous speech is recording data. One
audio database, ShATR, has been recorded, using 8 microphones

The power of computing has risen over the past few years to theto aid re_search in Fhis area [6]. A drawpack of these appr_oaches,
level where separate modalities such as audio and video can bdhough, is the requirement of headset microphones to help isolate a
used in a complementary method to improve desired results. Audiodesired speaker’s speech. An ideal approach could focus on a cho-
visual speech processing has shown great potential, particularly inS€n Speaker who is not wearing a microphone, either for comfort or
areas such as speech recognition and speaker authentication. Féecause of the application environment. The purpose of this work
speech recognition the addition of information from lipreading or iS to investigate the performance of audio-visual speech recogni-
other features helps make up for information lost due to corrupt- fion as a means to recognize speech from multiple, simultaneous
ing influences. Because of this, audio-visual speech recognitionSP€akers.
has the potential to outperform audio-only recognition, particu-
larly in noisy environments. Researchers have demonstrated this 3. TEST SETUP AND METHODS
potential of the audio-visual approach using various experimental
methods [1, 2, 3, 4]. Typically, the addition of information from  This work uses the last task in the CUAVE database, where speaker
visual features improves recognition rates, particularly in the pres- pairs pronounce strings of digits similar to telephone numbers. In-
ence of background noise. dividuals alternately speak two strings of digits separately but in
Another potential application of audio-visual speech methods the same field of view, then speak another string of digits simulta-
is to recognize speech from multiple, simultaneous speakers, a taskeously. The audio-visual speech recognizer tracks multiple faces
difficult to perform during audio speech recognition. Speech from and extracts features from each lip region. This additional visual
another user is one of the most challenging sources of noise, asnformation should provide a means to help separate individual
all the characteristics are similiar to the speech of the desired userspeakers for continuous digit recognition in this case. Results of a
to be recognized. Improved performance in this area would help speaker-independent, simultaneous-talker, audio-visual recognizer
solve the speech babble problem and aid in several applicationsare compared against those of a traditional audio-only recognizer.
where crowds or other non-user talkers are present. Results are included for an ideal, speaker-dependent audio recog-
This paper entails a study of the potential of using audio-visual nizer and a more realistic, speaker-independent recognizer.
speech recognition to improve results in multispeaker environments. The face-and-lip tracking routine was coded so that it could
Recognition of speech from simultaneous speaker pairs is testedrack multiple faces. The process begins with searching for the

2. MULTIPLE, SIMULTANEOUS SPEAKER SPEECH
RECOGNITION
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Speaker| Audio Ind. | Audio Dep.| Joint AV | Optimal AV
S01 M 0.00 % 23.33% | 20.80% | 36.67%
S02 M 13.33 % 36.67% | 30.00% | 30.00%
S04 F 20.00 % 23.33% | 23.33% | 26.67%
S20F 16.67 % 13.33% | 36.67% | 46.67%
S33 M 10.00 % 13.33% | 20.00% | 23.33%
S34F 3.33% 10.00% | 50.00% | 56.67 %

Table 1. Results (Word Accuracy) for Speakers from Multiple,
Simultaneous Speaker Tests (DCT).

simple, concatenated early-integration features.

To improve upon these results, multistream HMMs were im-
plemented as well. Multistream HMMs allow weighting of the
audio and visual features for superior performance. In this tech-
nique, two streams of features enter the recognizer. There are
separate models for each of the streams, but they are aligned in
a state-synchronous manner. The probabilities generated by each
model are weighted by coefficients that give the “strength” of each
stream. These can be changed to stress the visual or audio infor-
mation.

4. EARLY-INTEGRATION RESULTS AND DISCUSSION

The results of the simultaneous speaker tests for the audio recog-
nizers and early-integration audio-visual recognizer are given in
Table 1, where each row represents the results of recognizing that
speaker out of a pair. The scores given are recognition accuracies,
based on the following formula:

Figure 2. Speaker Group (DCT, female, male)

Accuracy = (H — I)/N % 100%, 1)

where N is the total number of words expected, the total cor-

rectly recognized, anflthe number of insertions. Recognition ac-
largest segment of face-classified blocks. Once this block is fOund,curacy is a more practical measure, as it is typically lower because
it is searched for the corresponding lip region. The tracker then of insertion errors. The audio recognizer performance tended to
returns to search the remaining area of the video frame for an ad-suffer more from insertions, due to the other speaker’s voice or
ditional large segment of face-classified blocks. This is assumednon-speech sounds that interfere. The visual recognizer, however,
to be a second face and searched for corresponding lips, as wellseemed more prone to delete words by not recognizing sufficient
Features are extracted for each set of lips and recorded based omouth movement, apparently, to recognize a word in a particular
which speaker was on the left or right of the frame. The features time segment.
chosen for these tests were the standard, 2-D DCT coefficients as  The results in Table 1 reveal very poor performance for recog-
detailed in previous work [7]. Figures 1 and 2 are frames taken nition accuracy for the speaker-independent, audio-only recognizer.
from the tracking program that illustrate tracking of two separate These scores are similiar to comparable 0 dB noise scores from
faces/lips and downsampling for extraction of the 2-D DCT. Three previous work [8], since the other speaker may be viewed as a
arbitrary speaker groups are actually used in this work as represennoise source. The speaker dependent recognizers, trained specif-
tative pairs: male/male, female/male, and female/female. ically for each speaker, do perform significantly better. The first

The DCT difference coefficients were concatenated with stan- audio-visual scores presented are obtained with a speaker-independent,

dard audio features (MFCC) and passed to the audio-visual rec-early integration recognizer. Audio and visual features are merely
ognizer. For audio-only testing, several recognizers were con-concatenated with no weighting on either information stream. These
structed. Six speaker-dependent recognizers were created by trainscores allow a significant performance improvement over both the
ing on recordings of the test speakers from other portions of the independent and even more ideal dependent recognizers. In all
CUAVE corpus. Also, one speaker-independent recognizer wascases, the joint recognizer outperforms the independent audio rec-
trained on all speakers but those used in these tests. A speakemgnize by a large margin and only falls short of the dependent
independent scenario is a more realistic setup, but the speakerrecognizer in one case, for speaker 2. Another conclusion from
dependent recognizers are included for additional comparison. Thethe results follows intuition that the female speaker should be eas-
speaker-dependent training should allow the recognizers to per-ier to distinguish from the male speaker in that test group. The
form almost as “matched filters” for each of the speakers. The audio-visual recognizer performs significantly better in this case.
audio-visual recognizer results are compared against each of thesinterestingly, though, recognizing the speech of the male speaker
audio recognizers. The initial audio-visual results are based ondoes not gain the same performance boost.
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5. MULTISTREAM RESULTS AND DISCUSSION

In an attempt to yield more improvement, multistream audio-visual
recognition was implemented using the same test sets. In mul-
tistream recognition, the audio and visual features maintain sep-
arate information streams coming into the recognizer. Separate §
HMMs are constructed for each information stream. During train-
ing, the streams receive equal weighting, but during recognition,
the streams may be weighted according to confidence. This methoc
has been used successfully on subband recognition, and there he
been some success to date with audio-visual recognition as well.
The concept of multistream recognition is also similar to that of
the fuzzy weighting often used in late-integration approaches to
audio-visual speech recognition. Intuitively, the visual informa-
tion should become more useful as the noise increases, and a sim
iliarly volumed, second speaker could be viewed as a case of 0 dB
noise. Based on this, audio stream weights of arqud should
produce improved results, as this is roughly a proper normalized
weighting of the audio information in noisy cases based on pre-
vious noise fusion work [8]. Results, however, do not indicate
the same trend as before in this regard. Table 1 also contains the
results of the optimal-stream-weighted, multistream audio-visual
recognizer in the last column. These results are optimal because
the highest performance was chosen for each speaker, regardles
of what the\ weighting value was. The optimal performance is
shown to achieve a significant improvement over the early integra-
tion recognizer.

An obstacle to overcome for practical implementation, though,
is that there is not a strong trend between the stream weighting
and optimal recognition performance based on these results. The
stream-weighting performance for each of the speaker pairs is dem
strated in Figures 3 - 5. There is no particular pattern about which
A values achieve the highest recognition scores. For a few of the
speakers, highest performance is achieved with a low-audio ratio,
around0 — 0.25, such as for the noise cases. The most regular
peaks, though, over all six speakers appear irdthe- 0.7 range
where the audio features are favored with some influence from the
visual information. Leaning slightly more toward the audio deci-
sion seems to coincide with the lower potential of the visual recog-
nizer in this continuous-speech, speaker-independent study. Based
on this, the joint recognizer achieves the best performance when
using the stronger audio information while gaining some informa-
tion from the visual stream to help separate recognition decisions
for each speaker.

Figure 6 includes a chart of all speakers that demonstrates that
there is no apparent trend. If each line is followed, though, most
peak around thé®.5 to 0.7 range, except for speaker 2. Inter-
estingly, this is the same speaker where the audio-visual recog-
nizer fails to exceed the dependent audio performance. Figure 7
demonstrates averaged performance for recognition rate and accu
racy over all six speakers. The recognition rate does not include
insertions, and is thus much higher. Insertions, however, are the
most likely problem when attempting to recognize simultaneous
speech. The peak in the average recognition accuracy is just abow
0.5, an even weighting of audio and video streams. Figure 8 is the
information from Table 1 in chart form. It can be seen that the in-
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Figure 3. Recognition Accuracy versus Audio Stream Weight
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Figure 4. Recognition Accuracy versus Audio Stream Weight
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dependent audio recognizer has the lowest performance, and that Figure 5. Recognition Accuracy versus Audio Stream Weight

the joint multistream recognizer achieves the highest performance,
by a large margin in most cases.
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Recognition Accuracy of Speaker in Pair
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Figure 6. Recognition Accuracy for Several Speakers from Pairs
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Figure 7. Recognition Rate and Accuracy Averaged over Speakers
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Figure 8. Recognition Accuracy for Audio-Visual and Audio
Methods
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6. SUMMARY AND CONCLUSIONS

This work attempted to test and improve performance for simulta-
neous, multiple-speaker speech recognition. Recordings from the
CUAVE database were used. A speaker-independent audio-only
recognizer was implemented and trained on all the speakers of the
database except those used in the speaker-pair testing. Also, sev-
eral speaker-dependent recognizers were created for each of the
individual speakers. Joint audio-visual recognizers both based on
early-integration and state-synchronous multistream fusion were
implemented and tested as well. The speaker-dependent audio rec-
ognizers outperform the speaker-independent recognizers as ex-
pected. The joint audio-visual recognizer, though, outperforms the
speaker-dependent audio recognizer in all cases except one where
it nearly matches performance. The multistream recognizer ex-
ceeds this performance and illustrates the best ability to “separate”
and recognize speech from the simultaneous speakers, but an im-
portant issue is choosing the optimal fusion ratio. In the case of
these experiments, the best multistream ratios relied slightly more
on the audio than video. This is likely because the audio recog-
nizer was the more reliable of the two, but further study in this area
could be useful for finding optimal fusion techniques in regard to
simultaneous speech recognition.
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