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ABSTRACT biometrics systems [4] can benefit from techniques that assess cor-
respondence between speech and facial movements.

In this paper we present our approach to detect monologues in
video shots. A monologue shot is defined as a shot containing a
talking person in the video channel with the corresponding speech
in the audio channel. Whilst motivated by the TREC 2002 Video
Retrieval Track (VT02), the underlying approach of synchrony be-
tween audio and video signals are also applicable for voice and

face_—basgc_i biometrics, assessing qf Iip-synch_ronization quality inaudio and visual feature spaces to a joint subspace where the mu-
.mOV|e.e.d|t|ng, and for speaker Iocallzatlon'ln video. Our approach ual information is maximized. A similar approach is suggested
is envisioned as tho part scheme. We first detggt occurrence oby Slaney [8] using Canonical Correlation Analysis on training
speech and face_ln_a V|_de0 shot. In shots containing both Speech:lata to find a linear projection of audio and video data onto a
a;]nd a faceh, Weddf'St'.n?u'Sh monologue shotshas t.hoze ?l_hOtS Wher§ing|e axis that maximizes the correlation between the projected
the speeﬁ an b acla movemer:lts e:jref synlc ronized. 10 MeasurGiaples. We suggest use of empirical distributions for evaluat-
the synchrony between speech and facial movements we use ‘?ng synchrony between audio and video using vector quantization

mutual-l'nfc?rmatlor? basgd meas;J]re. Exkp])enments with thg VT.02 (VQ) codebooks are used to estimate empirical distributions of au-
corpus indicate that using synchrony, the average precision Im-gi, “\iqeo, and joint distributions and their corresponding mutual

9 i i . : "
proves by more than 50% relative compared to using face andlnformatlon[3]. In addition, we also suggest “strong model-based”

speech information alone. Our synchrony b‘?‘sred monologue de_'approach where a word hypothesis is generated by performing au-

Romatic speech recognition (ASR) on the audio signal and the like-
lihood of the joint audio-visual signal for the word hypothesis is
evaluated[3]. We note here that this technique not only evaluates
synchrony but also “plausibility” (i.e. lip movements that corre-
spond to speech and not just being synchronized with it). Cutler [2]
trains a time-delay neural network that captures the relationship
between audio and video features for a given speaker. They then

((jV'ijozzjprotilhemdoftmct).nolog]]tugddetectlon |ntd|g|tgll \;]ld“eo a:qhwes, use this to locate the speaker in the video using the synchrony be-
efined as the detection of video segments which “contain(s) any . een audio and video.

eventinwhich a single person is at least partially visible and speaks ] ) )

for a long time without interruption by another speaker” [1]. Our We now outline our approach to monologue detection. Prior to
approach to monologue detection involves detection of synchrony Processing, a video sequence is broken into contiguous segments
between audio and video in addition to detection of a face in the called shots. A shot is defined as a single camera action. This shot
video and speech in the audio track. We hypothesize that usingchange dgtectlon is performed automatlcqlly. In the case of VT02,
audio-visual synchrony we can disambiguate between instances ofN!ST provided a standard shot segmentation for the corpus as part
narrations where there is unrelated speech in the audio track alongf the data. Our algorithm for monologue detection in video shots

with a face in the video and instances of monologues where theProceeds in two steps. For each video shot, we perform speech
face on screen is “responsible” for the speech in the audio track. and face detection to evaluate whether the shot contains speech

and has a face. For shots containing speech and face, we further

We note that synchrony detection has wide applicability. Firstly, ;
detecting synchrony between speech and face can be used to detefv@luate the synchrony between the face and speech using mutual

mine dominant speakers in applications such as meeting transcripinformation. The combined scores of speech, face, and synchrony
tion where we assume that we have access to both audio and visudf Used to rank all shots in the corpus.

data. In addition, in such a setting, we can use synchrony to per-  The rest of the paper is organized as follows: In section 2, we

form speaker localization in a video track [2, 3]. Such localization detail our approach to speech detection, face detection and syn-
enables the possibility of using noise-robust audio-visual speechchrony detection between audio and video. In section 3, we detail

recognition. Secondly, reliable metrics for assessing quality of lip- our monologue detection algorithm. In section 4, we present the

synchronization would be useful for movie editing and dubbing results of our monologue detector, evaluated by NIST as part of

into multiple languages. Likewise, Speaker voice- and face-basedVT02 benchmarking activity and follow with conclusions.

Hershey [5] assumes audio and video signals to be individu-
ally and jointly Gaussian random variables and estimates the mu-
tual information between them as a measure of synchrony. In [3],
we suggest an extension to this approach by relaxing the single
Gaussian assumption and allowing the audio and video signals to
be locally Gaussian. Fisher et al [6, 7] learn linear projections from

VT02) amongst 18 different submissions.

1. INTRODUCTION

This paper is motivated by the TREC 2002 Video Retrieval Track
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2. FACE, SPEECH AND SYNCHRONY DETECTION is shown in Equation 2

2.1. Face Detection AP — Ziezj\zfz p(?) )
The face detector we use is the likelihood ratio between two Gaus-yhere RR is the retrieved-relevant set and N is the total number

sian Mixture models (GMM), one trained on frontal faces and one .t correct documents in the dataset arfd) is the precision of the
trained on non-face images. Specifically, on a training corpus of ;i retrieved-relevant document. As can be seen from the results,

frontal faces, we mark facial feature points (eyes, nostrils, mouth the GMM face detector has high precision at the top 20 shots and
pixels. We perform a 2D separable Discrete Cosine Transform
faces. Similarly, we extract arbitrati x 11 pixel regions from . EEENL T L EREEL NS . EEPEELLE
4 | i
wu/ T

etc). Some example annotated faces are shown in Figure 1. Fromyetects mostly frontal faces. We note that this detector is not opti-
(DCT) and retain the top 50 coefficients as the feature representa-
the same corpus, ensuring that these regions are far away from th -
| r - .i 1 big
i :
m I

this annotated corpus we extract images that are normalized for,izeqd for detecting non-frontal faces.
tion for these normalized faces. These feature vectors are used t(
annotated face. These non-face regions are used to build a simila
NPT IR L I
T T T i

orientation and size, resulting in a normalized sizelbdfx 11
. . ! . ; T '4 by
train a 64-mixture, diagonal covariance GMM model representing | e -
64-mixture, diagonal covariance non-face GMM model.
H H

Fig. 1. Example ground-truth marked-up faces

To search for faces in an image, we extrattx 11 pixel re-
gions from the image at various scales and at all possible transla-
tions. For each such extracted region, we perform the likelihood
ratio test and retain the likelihood ratio as the score for the region.
Equation 1 shows the score for a region. The top-ranked N (whereFig. 2. The top 20 candidates of the GMM face detector on the
N is the maximum number of faces we want to detect) regions with \VT02 search set
positive scores are returned as face candidates. For monologue de-
tection, we retain only the top face candidate.

. 2.2. Speech Detection
s(0) = PROIF)

—_— 1 o . . .
P(D()|F) @ We begin with an annotated audio training set where pure audio
whetre_S_(z) |tshthte scg(r)eéocr_lteglo?rar_ldlg (Zf) |st:1he fethg’e_vziﬁtor stances of audio with only one concept (such as speech, music,
containing the top- coetlicients for the regiof. 1S the silence) in the audio track. Specifically, we manually annotate
the E\ce and non-t:a(t:t_a Gtrl\]/IM\f,T(r)ezspectl\}ely tract the f t opment set of the VT02 corpus. Regions corresponding to each
rom every shot in the corpus, we extract the frame a concept are segmented from the audio and low-level features are
for the shot. We. perform face dgtectlon on this key frame and train a GMM for each concept. However, this ignores the duration
score each shot in the corpus. Figure 2 shows the results of the
o - (or even training) videos (by assigning each frame in the new data
detector has an average precision (AP}3f. Average precision to the most likely generating concept) may yield implausibly short
[9], we detect faces with an accuracy 3%.8% using the GMM face de- lows: An HMM is used to model each audio concept; each state
tector. in a given HMM has the same observation distribution, namely the
the entire precision recall performance by a single number. It corresponds
to the area under the ideal precision recall curve. The metric credits both  3Itis closely related to the speech vs. non-speech segmentation scheme

concepts are manually annotated. By pure concepts we imply in-
likelihood of the observation given the modefsand F* represent speech, music, silence, explosion, and traffic sounds in the devel-
the mid-point of the shot description and use this as the key frameextracted. One obvious modeling scheme uses these features to
face detector on the VT02 corpus. We note here that this face properties of the audio events; use of these GMMs to label new
1In the IBM VVAV corpus which is captured under clean conditions €vents. One scheme for incorporating duration modeling is as fol-
2Average Precision is the evaluation metric used by NIST to encode GMM trained in the previous scherheThis can be viewed as im-
precision and recall. of IBM-Spine2, see Kingsbury et al. [10]
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position of a minimum duration constraint on the temporal extent tion image, we compute the ratio between the mutual information
of the atomic labels. of the face region and the average mutual information across the

Given a set of HMMs one for each audio concept, during test- entire image. Intuitively, the higher this score the greater the syn-
ing (labeling new videos) we use the following scheme to compute chrony between audio and video. Our experiments indicate that
the confidences of the different hypotheses. We use the HMMs tothe face location information from the face detector is error-prone
generate an N-best list at each audio frame and then average thesand varies considerably across the video. Hence, rather than rely
scores over the duration of the shot. We notice that there are varia-on the face location estimates from the face detector, we compute
tions in the absolute values of these scores due to variations in thethis ratio between the best x m pixel region in the mutual in-
shot lengths and the thresholds chosen for generating the N-besformation plot and the background, whereis chosen empirically
list etc. For example, a lower threshold allows for more hypothe- from the validation set. The search for the best region begins at the
ses at any one time but also allows a hypothesis to be valid for atop left pixel and proceeds through the entire image in raster order.
longer duration. To counter these variations, meemalizethese To speed up the search, we only consider regions whose center
scores by dividing each concept score with the sum of all the con- pixel is atleast 80% of the maximum mutual information value in
cept scores in a particular shot. The scores are now indicative ofthe plot.
the relative strengths of the different hypotheses in a given shot
rather than their absolute values.

We use this approach on 5 hours of validation data derived
from the 30 hours of VTO02 feature development set to evaluate the

performance of speech detection. O_n the validation set, c_ompris-We investigated two simple fusion approaches between the three
ing 2295 shots, we detect speech with an average precision (AP)cores. The first approach is a linear weighting of normalized
of .99. On the feature test set, comprising 1849 shots we have aspeech, face and synchrony scores. In the second approach, we
similar performance. Of the_to_p 1000 returned shots, we correctly compine scores using weighted products. The two combination
detect 990 of them as containing speech. rules are detailed in Equation 3 below. We do a grid search for
weights in the rangé0, 1) and we variance normalize the scores
prior to the grid search for weights. The learned variance normal-

. . . __ization parameters and weights are applied to unseen test data prior
Based on experimental results of a variety of synchrony detection, testing.

techniques [3], we choose the scheme that models audio and video
features as locally Gaussian distributions. For details of the ex-
periments, please refer [3]. Given a video shot, we extract all the
video frames corresponding to it and the associated audio. From
the audio signal, we derive MFCC coefficients that are standard where M, (i), M (i), F(i), Sp(i) and Sy (i) are the monologue

in speech recognition systems. The audio features are segmented.qre using weighted sum, monologue score using weighted prod-
into locally Gaussian segments using a model selection based S€Gjict, face, speech and synchrony scores for ghvespectively. We

mentation scheme [11]. For each such locally Gaussian audio Segy e here that these approaches can be thought of as Naive Bayes
ment, we evaluate the mutual information between every pixel in ¢|5ssifiers because of the implicit independence assumption.
the video frames and the audio features. This experiment is related

to [5] but differs mainly in the local Gaussian assumption using
model selection. On a corpus of 20 speakers, each speaking 10 ut-
terances each, we estimated the mutual information between audi
MFCCs and each pixel in the video using local Gaussian distribu-
tions. Figure 3 shows the estimated mutual information plots as

3. MONOLOGUE DETECTION USING FACE, SPEECH
AND SYNCHRONY

2.3. Detection Of Synchrony Between Audio And Video

M4 (i) = wr % F(i) + w2 x Sp(i) + ws * Sy (i)
M, (i) = F(i)"* * Sp(i)"? * Sy(i)"?

©)

4. RESULTS

QI'he number of monologue shots are extremely limited in both the
validation and test corpora. Based on NIST ground truth, of the

an image, using (increased) pixel brightness to reflect (increased
mutual information with the audio stream. In all 200 cases, we
could clearly localize the face region from the rest of the video.
The parts of the face that had high mutual information with the

)2295 validation shots, only 33 (1.4%) shots are classified as mono-

logues. Similarly, of the 1849 shots in the test corpus, only 38
(2.1%) shots are monologues. In contrast, more than 75% of the
shots contain speech and more than 27% of the shots contain faces.

speech are fairly person dependent, but it is promising to see thml\/lonologue is an extremely rare class in this dataset and therefore

only the face region has high mutual information with the speec
stream. To get a synchrony score from such a mutual informa-

@

Fig. 3. Mutual Information faces

h makes it a very interesting detection problem.

In Figure 4, we present the average precision performance
for the monologue detector, both on the validation set and on the
test set. The first two columns represent the performance of the
two different fusion rules on the validation set. We see that the
weighted sum approach is slightly better than product weighting
and chose this for our VT02 submission. The next two columns
show the average precision numbers released by NIST for the av-
erage (across 18 different monologue detector submissions), and
our submitted detector (the best in VT02).

To quantify the effect of synchrony on monologue detection,
in Table 1 we compare the performance of using all 3 scores with
using only face and speech information alone. The first column
indicates the approach used. The second column shows the AP and
the third column shows the Recall at 1000 documents. It is clear
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Fig. 4. Average precision plots for the monologue detector for the
VTO02 corpus. The first two columns represent the performance
of the two fusion schemes on the validation set. The next column

illustrates the average performance across all submitted detectors 3]

and the last column represents our submission to VT02.

that using synchrony in addition to face and speech information
adds significant performance improvement.

Technique | AP | Recall@1000
face+speech .19 .84
with Sync | .30 .88

Table 1. Comparison between synchrony and face+speech for
monologue detection

5. SUMMARY AND DISCUSSION

In this paper we proposed the use of synchrony between audio

face localization and synchrony detection can be refined in steps
is an interesting pursuit to enable fast localization and detection of
talking heads in applications such as meeting transcription, smart
environments, biometric authentication, and pervasive computing.
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