
AUDIO-VISUAL SYNCHRONY FOR DETECTION OF MONOLOGUES IN VIDEO
ARCHIVES

G. Iyengar, H. J. Nock, C. Neti

IBM TJ Watson Research Center
Yorktown Heights, NY 10598

USA

ABSTRACT

In this paper we present our approach to detect monologues in
video shots. A monologue shot is defined as a shot containing a
talking person in the video channel with the corresponding speech
in the audio channel. Whilst motivated by the TREC 2002 Video
Retrieval Track (VT02), the underlying approach of synchrony be-
tween audio and video signals are also applicable for voice and
face-based biometrics, assessing of lip-synchronization quality in
movie editing, and for speaker localization in video. Our approach
is envisioned as a two part scheme. We first detect occurrence of
speech and face in a video shot. In shots containing both speech
and a face, we distinguish monologue shots as those shots where
the speech and facial movements are synchronized. To measure
the synchrony between speech and facial movements we use a
mutual-information based measure. Experiments with the VT02
corpus indicate that using synchrony, the average precision im-
proves by more than 50% relative compared to using face and
speech information alone. Our synchrony based monologue de-
tector submission had the best average precision performance (in
VT02) amongst 18 different submissions.

1. INTRODUCTION

This paper is motivated by the TREC 2002 Video Retrieval Track
(VT02) problem of monologue detection in digital video archives,
defined as the detection of video segments which “contain(s) an
event in which a single person is at least partially visible and speaks
for a long time without interruption by another speaker” [1]. Our
approach to monologue detection involves detection of synchrony
between audio and video in addition to detection of a face in the
video and speech in the audio track. We hypothesize that using
audio-visual synchrony we can disambiguate between instances of
narrations where there is unrelated speech in the audio track along
with a face in the video and instances of monologues where the
face on screen is “responsible” for the speech in the audio track.

We note that synchrony detection has wide applicability. Firstly,
detecting synchrony between speech and face can be used to deter-
mine dominant speakers in applications such as meeting transcrip-
tion where we assume that we have access to both audio and visual
data. In addition, in such a setting, we can use synchrony to per-
form speaker localization in a video track [2, 3]. Such localization
enables the possibility of using noise-robust audio-visual speech
recognition. Secondly, reliable metrics for assessing quality of lip-
synchronization would be useful for movie editing and dubbing
into multiple languages. Likewise, Speaker voice- and face-based

biometrics systems [4] can benefit from techniques that assess cor-
respondence between speech and facial movements.

Hershey [5] assumes audio and video signals to be individu-
ally and jointly Gaussian random variables and estimates the mu-
tual information between them as a measure of synchrony. In [3],
we suggest an extension to this approach by relaxing the single
Gaussian assumption and allowing the audio and video signals to
be locally Gaussian. Fisher et al [6, 7] learn linear projections from
audio and visual feature spaces to a joint subspace where the mu-
tual information is maximized. A similar approach is suggested
by Slaney [8] using Canonical Correlation Analysis on training
data to find a linear projection of audio and video data onto a
single axis that maximizes the correlation between the projected
variables. We suggest use of empirical distributions for evaluat-
ing synchrony between audio and video using vector quantization
(VQ) codebooks are used to estimate empirical distributions of au-
dio, video, and joint distributions and their corresponding mutual
information[3]. In addition, we also suggest “strong model-based”
approach where a word hypothesis is generated by performing au-
tomatic speech recognition (ASR) on the audio signal and the like-
lihood of the joint audio-visual signal for the word hypothesis is
evaluated[3]. We note here that this technique not only evaluates
synchrony but also “plausibility” (i.e. lip movements that corre-
spond to speech and not just being synchronized with it). Cutler [2]
trains a time-delay neural network that captures the relationship
between audio and video features for a given speaker. They then
use this to locate the speaker in the video using the synchrony be-
tween audio and video.

We now outline our approach to monologue detection. Prior to
processing, a video sequence is broken into contiguous segments
called shots. A shot is defined as a single camera action. This shot
change detection is performed automatically. In the case of VT02,
NIST provided a standard shot segmentation for the corpus as part
of the data. Our algorithm for monologue detection in video shots
proceeds in two steps. For each video shot, we perform speech
and face detection to evaluate whether the shot contains speech
and has a face. For shots containing speech and face, we further
evaluate the synchrony between the face and speech using mutual
information. The combined scores of speech, face, and synchrony
is used to rank all shots in the corpus.

The rest of the paper is organized as follows: In section 2, we
detail our approach to speech detection, face detection and syn-
chrony detection between audio and video. In section 3, we detail
our monologue detection algorithm. In section 4, we present the
results of our monologue detector, evaluated by NIST as part of
VT02 benchmarking activity and follow with conclusions.
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2. FACE, SPEECH AND SYNCHRONY DETECTION

2.1. Face Detection

The face detector we use is the likelihood ratio between two Gaus-
sian Mixture models (GMM), one trained on frontal faces and one
trained on non-face images. Specifically, on a training corpus of
frontal faces, we mark facial feature points (eyes, nostrils, mouth
etc). Some example annotated faces are shown in Figure 1. From
this annotated corpus we extract images that are normalized for
orientation and size, resulting in a normalized size of11 × 11
pixels. We perform a 2D separable Discrete Cosine Transform
(DCT) and retain the top 50 coefficients as the feature representa-
tion for these normalized faces. These feature vectors are used to
train a 64-mixture, diagonal covariance GMM model representing
faces. Similarly, we extract arbitrary11 × 11 pixel regions from
the same corpus, ensuring that these regions are far away from the
annotated face. These non-face regions are used to build a similar
64-mixture, diagonal covariance non-face GMM model.

Fig. 1. Example ground-truth marked-up faces

To search for faces in an image, we extract11 × 11 pixel re-
gions from the image at various scales and at all possible transla-
tions. For each such extracted region, we perform the likelihood
ratio test and retain the likelihood ratio as the score for the region.
Equation 1 shows the score for a region. The top-ranked N (where
N is the maximum number of faces we want to detect) regions with
positive scores are returned as face candidates. For monologue de-
tection, we retain only the top face candidate.

S(i) =
P (D(i)|F )

P (D(i)|F̄ )
(1)

whereS(i) is the score for regioni andD(i) is the feature vector
containing the top-50 DCT coefficients for the region.P is the
likelihood of the observation given the models;F andF̄ represent
the face and non-face GMMs, respectively1.

From every shot in the VT02 corpus, we extract the frame at
the mid-point of the shot description and use this as the key frame
for the shot. We perform face detection on this key frame and
score each shot in the corpus. Figure 2 shows the results of the
face detector on the VT02 corpus. We note here that this face
detector has an average precision (AP) of.352. Average precision

1In the IBM VVAV corpus which is captured under clean conditions
[9], we detect faces with an accuracy of99.8% using the GMM face de-
tector.

2Average Precision is the evaluation metric used by NIST to encode
the entire precision recall performance by a single number. It corresponds
to the area under the ideal precision recall curve. The metric credits both
precision and recall.

is shown in Equation 2

AP =

∑
i∈RR p(i)

N
(2)

whereRR is the retrieved-relevant set and N is the total number
of correct documents in the dataset andp(i) is the precision of the
ith retrieved-relevant document. As can be seen from the results,
the GMM face detector has high precision at the top 20 shots and
detects mostly frontal faces. We note that this detector is not opti-
mized for detecting non-frontal faces.

Fig. 2. The top 20 candidates of the GMM face detector on the
VT02 search set

2.2. Speech Detection

We begin with an annotated audio training set where pure audio
concepts are manually annotated. By pure concepts we imply in-
stances of audio with only one concept (such as speech, music,
silence) in the audio track. Specifically, we manually annotate
speech, music, silence, explosion, and traffic sounds in the devel-
opment set of the VT02 corpus. Regions corresponding to each
concept are segmented from the audio and low-level features are
extracted. One obvious modeling scheme uses these features to
train a GMM for each concept. However, this ignores the duration
properties of the audio events; use of these GMMs to label new
(or even training) videos (by assigning each frame in the new data
to the most likely generating concept) may yield implausibly short
events. One scheme for incorporating duration modeling is as fol-
lows: An HMM is used to model each audio concept; each state
in a given HMM has the same observation distribution, namely the
GMM trained in the previous scheme3. This can be viewed as im-

3It is closely related to the speech vs. non-speech segmentation scheme
of IBM-Spine2, see Kingsbury et al. [10]
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position of a minimum duration constraint on the temporal extent
of the atomic labels.

Given a set of HMMs one for each audio concept, during test-
ing (labeling new videos) we use the following scheme to compute
the confidences of the different hypotheses. We use the HMMs to
generate an N-best list at each audio frame and then average these
scores over the duration of the shot. We notice that there are varia-
tions in the absolute values of these scores due to variations in the
shot lengths and the thresholds chosen for generating the N-best
list etc. For example, a lower threshold allows for more hypothe-
ses at any one time but also allows a hypothesis to be valid for a
longer duration. To counter these variations, wenormalizethese
scores by dividing each concept score with the sum of all the con-
cept scores in a particular shot. The scores are now indicative of
the relative strengths of the different hypotheses in a given shot
rather than their absolute values.

We use this approach on 5 hours of validation data derived
from the 30 hours of VT02 feature development set to evaluate the
performance of speech detection. On the validation set, compris-
ing 2295 shots, we detect speech with an average precision (AP)
of .99. On the feature test set, comprising 1849 shots we have a
similar performance. Of the top 1000 returned shots, we correctly
detect 990 of them as containing speech.

2.3. Detection Of Synchrony Between Audio And Video

Based on experimental results of a variety of synchrony detection
techniques [3], we choose the scheme that models audio and video
features as locally Gaussian distributions. For details of the ex-
periments, please refer [3]. Given a video shot, we extract all the
video frames corresponding to it and the associated audio. From
the audio signal, we derive MFCC coefficients that are standard
in speech recognition systems. The audio features are segmented
into locally Gaussian segments using a model selection based seg-
mentation scheme [11]. For each such locally Gaussian audio seg-
ment, we evaluate the mutual information between every pixel in
the video frames and the audio features. This experiment is related
to [5] but differs mainly in the local Gaussian assumption using
model selection. On a corpus of 20 speakers, each speaking 10 ut-
terances each, we estimated the mutual information between audio
MFCCs and each pixel in the video using local Gaussian distribu-
tions. Figure 3 shows the estimated mutual information plots as
an image, using (increased) pixel brightness to reflect (increased)
mutual information with the audio stream. In all 200 cases, we
could clearly localize the face region from the rest of the video.
The parts of the face that had high mutual information with the
speech are fairly person dependent, but it is promising to see that
only the face region has high mutual information with the speech
stream. To get a synchrony score from such a mutual informa-

(a) (b)

Fig. 3. Mutual Information faces

tion image, we compute the ratio between the mutual information
of the face region and the average mutual information across the
entire image. Intuitively, the higher this score the greater the syn-
chrony between audio and video. Our experiments indicate that
the face location information from the face detector is error-prone
and varies considerably across the video. Hence, rather than rely
on the face location estimates from the face detector, we compute
this ratio between the bestm × m pixel region in the mutual in-
formation plot and the background, wherem is chosen empirically
from the validation set. The search for the best region begins at the
top left pixel and proceeds through the entire image in raster order.
To speed up the search, we only consider regions whose center
pixel is atleast 80% of the maximum mutual information value in
the plot.

3. MONOLOGUE DETECTION USING FACE, SPEECH
AND SYNCHRONY

We investigated two simple fusion approaches between the three
scores. The first approach is a linear weighting of normalized
speech, face and synchrony scores. In the second approach, we
combine scores using weighted products. The two combination
rules are detailed in Equation 3 below. We do a grid search for
weights in the range(0, 1) and we variance normalize the scores
prior to the grid search for weights. The learned variance normal-
ization parameters and weights are applied to unseen test data prior
to testing.

M+(i) = w1 ∗ F (i) + w2 ∗ Sp(i) + w3 ∗ Sy(i) (3)

Mx(i) = F (i)w1 ∗ Sp(i)w2 ∗ Sy(i)w3

whereM+(i), Mx(i), F (i), Sp(i) andSy(i) are the monologue
score using weighted sum, monologue score using weighted prod-
uct, face, speech and synchrony scores for shoti, respectively. We
note here that these approaches can be thought of as Naive Bayes
classifiers because of the implicit independence assumption.

4. RESULTS

The number of monologue shots are extremely limited in both the
validation and test corpora. Based on NIST ground truth, of the
2295 validation shots, only 33 (1.4%) shots are classified as mono-
logues. Similarly, of the 1849 shots in the test corpus, only 38
(2.1%) shots are monologues. In contrast, more than 75% of the
shots contain speech and more than 27% of the shots contain faces.
Monologue is an extremely rare class in this dataset and therefore
makes it a very interesting detection problem.

In Figure 4, we present the average precision performance
for the monologue detector, both on the validation set and on the
test set. The first two columns represent the performance of the
two different fusion rules on the validation set. We see that the
weighted sum approach is slightly better than product weighting
and chose this for our VT02 submission. The next two columns
show the average precision numbers released by NIST for the av-
erage (across 18 different monologue detector submissions), and
our submitted detector (the best in VT02).

To quantify the effect of synchrony on monologue detection,
in Table 1 we compare the performance of using all 3 scores with
using only face and speech information alone. The first column
indicates the approach used. The second column shows the AP and
the third column shows the Recall at 1000 documents. It is clear
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Fig. 4. Average precision plots for the monologue detector for the
VT02 corpus. The first two columns represent the performance
of the two fusion schemes on the validation set. The next column
illustrates the average performance across all submitted detectors
and the last column represents our submission to VT02.

that using synchrony in addition to face and speech information
adds significant performance improvement.

Technique AP Recall@1000
face+speech .19 .84
with Sync .30 .88

Table 1. Comparison between synchrony and face+speech for
monologue detection

5. SUMMARY AND DISCUSSION

In this paper we proposed the use of synchrony between audio
and video features as a strong cue to detect monologues in video
archives. This is used in concert with speech and face detection
to build a model for monologues. We applied this monologue
detector to the VT02 corpus as part of the benchmarking activ-
ity. Based on these results, it appears that the synchrony based
approach is an extremely promising approach for detecting mono-
logues in video sequences. We note that, as currently formulated,
our scheme for monologue detection cannot differentiate between
monologues and dialogue scenes where the faces of both parties
are visible to the camera. However, this approach in combination
with a speaker change detection scheme (cf. [11]) is a possibility
for such instances.

We did not make use of the face location information provided
by the face detector. This is mainly because of the erroneous es-
timates of the scale, orientation, and position of the face. One
possibility is to use the synchrony as a mechanism to guide the
face detection to get better localization of the face in an image.
This approach is promising for talking head detection under vary-
ing lighting and visual noise conditions. With better face localiza-
tion, rather than searching the entire image for synchrony, only the
localized region could be searched, thereby enabling an efficient
mechanism for synchrony detection. An iterative approach where

face localization and synchrony detection can be refined in steps
is an interesting pursuit to enable fast localization and detection of
talking heads in applications such as meeting transcription, smart
environments, biometric authentication, and pervasive computing.
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