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ABSTRACT 

Equation Section 1 
Robust progressive image transmission over unreliable channels 
with variable bandwidth requires Multiple Description Coding 
(MDC) systems that produce highly error-resilient embedded bit-
streams. The proposed Embedded Multiple Description Scalar 
Quantizers (EMDSQ) meet the desired features consisting of a 
high redundancy level, fine grain rate adaptation and progressive 
transmission of each description. Experimental results show that 
EMDSQ yield better rate-distortion performance in comparison 
to the Multiple Description Uniform Scalar Quantizers 
(MDUSQ) previously proposed in the literature. Moreover, the 
generalized form of EMDSQ targeting an arbitrary number of 
channels is proposed, which offers the possibility of designing 
realistic coders for practical multi-channel communication 
systems. 

 
1. INTRODUCTION 

 
A new family of communication services involving the delivery 
of image data over bandwidth limited and error prone channels 
as packet networks and wireless links has emerged in the last few 
years. In order to increase the reliability over these types of 
channels, diversity is commonly resorted to, besides error 
correction techniques. Multiple Description Coding was 
introduced to efficiently overcome the channel impairments over 
diversity-based systems allowing the decoders to extract 
meaningful information from a subset of a bit-stream.  
The focus of previous research was laid on finding the optimal 
achievable rates-distortion regions in [1], [2], followed by the 
design of practical compression systems to meet these theoretical 
boundaries. Examples include methods based on quantization 
[3], [4] and multiple description transform [5], [6]. The design 
of multiple description scalar quantizers (MDSQ) was pioneered 
in [3] under the assumption of fixed length codes and fixed 
codebook sizes. Significant improvements are achieved in [4] 
where the design of the quantizers is subject to the constraint of 
a given entropy, and not of a given codebook size.  
In order to achieve robust communication over unreliable 
channels the MDC system has to deliver highly error-resilient 
bit-streams characterized by a corresponding high level of 
redundancy. Additionally, a fine grain scalability of the bit-
stream is a desirable feature for bandwidth varying channels. A 
system conceived so as to meet these requirements is described 
in [7] where the progressive MDC algorithm is based on 
multiple description uniform scalar quantizers (MDUSQ). 
Moreover, for a high level of redundancy and for low bit-rates, 
the approach of [7] outperforms the embedded MDC algorithm 
based on the polyphase transform proposed in [8]. 
In this paper we introduce another type of embedded scalar 
quantizers for MDC systems, which we shall refer to as 

Embedded Multiple Description Scalar Quantizers (EMDSQ). 
The proposed EMDSQ meet the desired features consisting of a 
high redundancy level, fine grain rate adaptation and progressive 
transmission of each description. For an erasure channel model 
characterized by burst errors, progressive transmission shall also 
provide quality improvement for the central reconstruction due 
to the use of undamaged data from partially damaged received 
side channels. The reconstruction of the central channel can be 
performed if the receiver knows where the burst error occurs. To 
satisfy this requirement, techniques such as inserting 
synchronization markers in the bit-stream can be used.  
The above-mentioned MDUSQ [7] and the proposed EMDSQ 
are incorporated in a wavelet-based coding system that employs 
the Quad Tree (QT) coding algorithm described in [9]; the rate-
distortion performances of both MDC systems are compared, 
when applied on a common dataset. Finally, the generalized 
form of EMDSQ targeting an arbitrary number of channels is 
proposed, offering the possibility of designing realistic coders 
for practical multi-channel communication systems.  
The paper is structured as follows. In Section 2 the proposed 
EMDSQ are introduced. Section 3 describes briefly the coding 
system based on QT coding. Comparative coding results are 
given in Section 4. Finally, we conclude our work in Section 5.  
 

2. EMBEDDED MULTIPLE DESCRIPTION SCALAR 
QUANTIZERS 

 
The system proposed by Vaishampayan [3] relies on the ability 
to design scalar quantizers with nested thresholds. The source 
represented by a random process {Xn, n +∈ Z } with zero mean 
and variance 2

Xσ  is quantized by the side quantizers 
m
SQ :R → {0,1,...,K-1}, m = 1,2. Each of the two quantizers 

outputs an index ,m
kq k +∈ Z  that can be separately used to 

estimate the source sample. The reconstruction where 
( )m m

S kQ x q=  must be the centroid of the cell 
1
( )m m

S kQ q
−

. If both 
indices 1 1( )S kQ x q=  and 2 2( )S kQ x q=  are received, the 
reconstruction is the centroid of the intersection 1 1 2( , )C k kQ q q− =  

1 11 1 2 2( ) ( )S k S kQ q Q q
− −

I  represented by the central inverse quantizer. 
The number of diagonals covered in the index assignment matrix 
triggers the redundancy between the two descriptions [3]. 
Quantization methods based on embedded scalar quantizers were 
previously proposed in the literature – see for e.g. [10]. In 
embedded quantization, the partition cells at higher quantization 
rates are embedded in the partition cells at lower rates. We 
assume a set of embedded side quantizers ,0m

SQ , ,1m
SQ ,…, ,m P

SQ  
with 1,2m = , and a set of embedded central quantizers 0

CQ , 1
CQ , 

…, P
CQ  where 

1 1 11, 2,1 2 1 2( , ) ( ) ( )p p p
k k k kC S SQ q q Q q Q q

− − −
= I  for any 

quantization level , 0p p P≤ ≤ . The partition cells of any 
quantizer ,m p

SQ  and p
CQ  are embedded in the partition cells of 

the quantizers ,m P
SQ , , 1m P

SQ − ,…, , 1m p
SQ +  and P

CQ , 1P
CQ − ,…, 

1p
CQ +  respectively. 
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Fig. 1. Two-channel EMDSQ. The two side quantizers are ,m p
SQ , 

with 1,2m = and 0,1p = . ( )p
CQ x  represents the central quantizer. 

Neglecting the signs, the side and central partitions cells are of 
the form 

0

,1m
kS , 

0 1

,0
,

m
k kS  and 

0

1
kC , 

0 1

0
,k kC , respectively. 

Denote by N  the number of cells of ,m P
SQ  and by kL  the 

number of partitions in which an arbitrary side partition cell 
,m p

kS  of ,m p
SQ  is divided. The maximum number of cells in 

which any ,m p
kS  is partitioned is denoted by pN , with k pL N≤  

for any k . Starting from the lowest-rate quantizer ,m P
SQ , each 

side partition cell ,
P

m P
kS , 0 Pk N≤ <  is divided into a number of 

PkL  cells 
1

, 1
,P P

m P
k kS

−

− , 10
PP kk L−≤ <  of , 1m P

SQ − . In general, for each 
side-quantizer ,m p

SQ  one associates to any 
1

,
, ,...,P P p

m p
k k kX S

−
∈  the 

quantizer index 1, ,...,P P pk k k− . This allows us to obtain the 
indices of lower rate quantization by leaving aside components 
of higher rate quantization, similar to the uniform embedded 
scalar quantizers [10].  
For the proposed EMDSQ family, the side quantizers ,m p

SQ  are 
non-uniform embedded quantizers, thus for any 0 p P≤ ≤  there 
exist ,k j , k j≠  such that k jL L≠ . The example depicted in Fig. 
1 illustrates an instantiation of the proposed two-channel 
EMDSQ. In view of simplification, we consider only two 
quantization levels 0,1p = . We notice for instance that the 
partitions 2,1

,1S−  and 2,1
,1S+  of the second-channel embedded 

quantizer 2,1
SQ  are divided respectively into the three partitions 

2,0
,1,0S± , 2,0

,1,1S±  and 2,0
,1,2S±  of the higher rate quantizer 2,0

SQ . On the 
contrary, the dead zone 2,1

0S  is not divided and is transformed 
into 2,0

0,0S  of 2,0
SQ .  

A uniform entropy-coded scalar quantizer is optimal for high 
rates, and nearly optimal for lower rates [10]. Furthermore, for 
input data with symmetric probability density function (PDF), 
the rate-distortion behavior at low rates can be improved by 
widening the partition cell located around zero, that is, by using 
deadzone uniform scalar quantizers [10]. It can be noticed that 
the central quantizer obtained from the side quantizers presented 
in Fig. 1 is a double-deadzone embedded quantizer. Hence, it 
shows the abovementioned characteristics. 
For two-channel EMDSQ, the analytical expression of the 
proposed embedded side-quantizer for the first channel is: 

) )
) )

1, 1,

1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1,

0 [ , )

( ) ( ) , ,

( ) , ,

p p
Inf Inf

p p p p p p
S A Sup SupInf Inf

p p p p p
B Sup SupInf Inf

x A A

Q x Q x x A A A A

Q x x B B B B

 ∈ −
  = ∈ − −  
  ∈ − −  

U

U

 (1) 

where:  

( )1, ( ) ( ) %2
2 2

p
A p p

x
Q x sign x k p

ξ  
 = + − + 
 ∆   

 (2) 

( )1, 1 %2
( ) ( )

22 2 2 2
p

B p p

x k p
Q x sign x

ξ  + −
 = + + 
 ⋅ ∆ ⋅   

 (3) 

The boundary points in (1) are defined as follows: 
1, (2 (3 1 2 %2) )p p
SupA k p ξ= ∆ + + − , 1, (2 (3 2 %2) )p p

InfA k p ξ= ∆ + − , 
1, (2 (3 3 %2) )p p
SupB k p ξ= ∆ + − − , 1, (2 (3 1 %2) )p p

InfB k p ξ= ∆ + − − .  

where a    denotes the integer part of a , 0∆ >  is the cell size 
for 0

CQ , %2 2 2p p p= − ⋅   , and ξ  (with 1ξ < ) determines the 
width of the deadzone. The index k +∈ Z  determines the width of 
the quantizer granular region. 
Since the parameter ξ  controls the width of the central 
deadzone, by tuning its value, we obtain corresponding families 
of embedded quantizers. It should be noted that, when 1 2ξ = , 
the central quantizer is uniform, while when 0ξ = , the deadzone 
width is 2∆ ; this case is exemplified in Fig. 1. Negative values 
of the parameter ξ  are further widening the deadzone [10].  
 
2.1. Generalization to M channels EMDSQ 
 
Vaishampayan’s method to design MDSQ for two channels 
relies on generating 2D index allocation matrices. The index 
allocation method can be generalized to more than two channels 
and more than two receivers, respectively. Hence, the solution 
for an arbitrary number of channels M consists in generating an 
M-dimensional index allocation matrix. It is obvious that such an 
M-dimensional matrix can no longer be graphically represented, 
as in [3], and that M channel quantizers can only be formulated 
analytically.  
Taking as a starting point equation (1) that describes the first 
channel quantizer corresponding to the two-channel EMDSQ, it 
is possible to generalize the analytical formula for M-channels, 
as shown below: 

) )
) )

, , , , ,

,

, , , , ,

( ) , ,
( )

( ) , ,

m p m p m p m p m p
A Sup SupInf Infm p

S m p m p m p m p m p
B Sup SupInf Inf

Q x x A A A A
Q x

Q x x B B B B

  ∈ − −  = 
  ∈ − − 

U

U
 (4) 

with: 

( )

( )

,

,

1 2
( ) ( ) %2

1 2
( ) ( ) 1 %2

1( 1 )

m p
A p

m p
B p

x M m
Q x sign x k p

mmM

x M m
Q x sign x k p

M mM m M

 + −= − + 
∆  

 + −= + + − 
+ −+ − ∆  

(5) 

and the boundary points are defined as follows: 
, (( 1) ( 1 )( %2))m p p

SupA M M k m M m p= ∆ ⋅ + + + + − , 
, (( 1) ( 1 )( %2))m p p

InfA M M k M m p= ∆ ⋅ + + + − , 
, (( 1) 1 ( %2))m p p

SupB M M k M m p= ∆ ⋅ + + + − , 
, (( 1) ( %2))m p p

InfB M M k m m p= ∆ ⋅ + + − , 

where m , 1 m M≤ ≤  denotes the channel index. 
Notice that the particular example of (1) is derived from (4) for 

2M = , 1m =  and 0ξ = . 
Based on the expressions for ,m p

SupA , ,m p
SupB , ,m p

InfA , ,m p
InfB  given 

above, one notices that the cell size ( )p∆ for the side quantizer 
,m p

SQ  at level p and index m depends on the number of channels 
M by ( ) (0)p pM∆ = ∆ , where (0)∆  is the cell size for the highest-
rate side quantizer ,0m

SQ , and (0) m∆ = ∆  or (0) ( 1 )M m∆ = + − ∆ . 
Fig. 2 depicts the case of four channels ( 4M = ) and two 
quantization levels ( 0 1p≤ ≤ ). Notice that the partitions of the 
side quantizers ,0m

SQ , 1 4m≤ ≤  are embedded respectively in the 
partitions of the side quantizers ,1m

SQ . Notice that the central 
quantizer p

CQ  is a double deadzone embedded quantizer with 
cell size ( ) (0)4p p

C C∆ = ∆ , where (0)
C∆ = ∆  is the cell size of 0

CQ . 

V - 737

➡ ➡



 
1,1

,1S+
1,1
0S

1,0
,1,0S+

1,0
0,0S 1,0

,0,3S+
1,0

,0,4S+
1,0

,0,5S+
1,0

,0,6S+
1,0

,0,1S+
1,0

,0,2S+

2,1
0S

2,0
,0,3S+

2,1
,1S+

2,0
0,0S 2,0

,1,2S+
2,0
,0,4S+

2,0
,1,0S+

2,0
,1,1S+

2,0
,0,2S+

2,0
,0,1S+

3,1
0S

3,1
,0,1S+

3,1
0,0S

3,1
,1S+

3,0
,0,2S+

3,1
,1,1S+

3,1
,1,0S+

3,1
,1,2S+

0
0,0C 0

,0,1C+
0
,1,3C+

0
,2,3C+

0
,3,3C+

0
,4,3C+

1
0C 1

,1C+
1

,2C+
1

,3C+
1

,4C+

4,1
0S 4,1

,1S+

3,1
,1,3S+

3,1
,1,4S+

4,1
0,0S 4,1

,1,1S+
4,1
,1,0S+

4,1
,1,2S+

4,1
,1,3S+

4,1
,1,4S+

4,1
,1,5S+

4,1
,1,6S+

... ... ... ...

1,0
SQ

2,0
SQ

3,0
SQ

0
CQ

4,0
SQ

1,1
SQ

2,1
SQ

3,1
SQ

4,1
SQ

1
CQ

 
Fig. 2. Four-channel EMDSQ. The side quantizers are ,m p

SQ , 
with 1...4m = , 0,1p = . The central quantizer is p

CQ . The negative 
side is a mirrored version of the positive side shown above. 

2.2 Dependency between redundancy and the number of 
channels 
 
All approaches that imply MDC involve creating redundancy in 
the bit-stream transmitted over several channels. Denote by 
Rm, 1 m M≤ ≤  the rates, and by Dm(Rm) the corresponding side 
average distortions over M channels. The average distortion of 
the central quantizer shall be D0. The standard source coder, i.e. 
the single-description coder (SDC) minimizes D0 for a given rate 

0R . Intuitively, the redundancy is the bit-rate sacrificed 
compared to the SDC coder in order to lower the Dm distortion. 
We consider a redundancy function: 

0
1

M

m
m

R Rρ
=

= −∑  (6) 

where 0R  is the lowest rate needed by any SDC in order to 
achieve the central D0 distortion of the MDC. For a fixed D0, the 
redundancy ranges from 0( 1)M R− (the bit-stream is replicated 
over the M channels) to 0 (the data is totally uncorrelated over 
the M channels).  
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Fig. 3. Redundancy ρ  versus number of channels for 2 7M≤ ≤ . 
The number of quantization levels is 5P = , and 0 5p≤ ≤ .  

For the lowest-rate case (see example of Fig. 2), the number of 
central quantizer partitions is 2( 1) 1M + − . Hence, the central 
quantizer rate is 0 2log (2( 1) 1)R M= + − . Since the number of 
partitions for all lowest-rate EMDSQ side-quantizers is three, 
their individual rate is 2log 3mR = . Thus, formula (6) for the 
lowest rate quantizers can be written 2 2log 3 log (2 1)P M Mρ = − + . 
Similarly, for level 1p P= − , the number of partitions of the side 
quantizers , 1m P

SQ −  is 4 1M − , which yields a rate of 
2log (4 1)mR M= − . The central quantizer rate will be 

0 2(log 2 ( 1) 1)R M M= + − . Following the same reasoning, for 

quantization level p, we obtain 2log (4 1)P p
mR M −= −  and 

0 2log (2 ( 1) 1)P pR M M−= + − . Consequently, the redundancy for 
quantization level p can be expressed as follows:  

2 2log (4 1) log (2 ( 1) 1)P p P p
p M M M Mρ − −= − − + −  (7) 

From (7), one can deduce the analytical expression of the 
normalized redundancy: 

2

2

log (4 1)
1

log (2 ( 1) 1)

P p

p P p

M M

M M
ρ

−

−
−′ = −

+ −
 (8) 

One can conclude that for the EMDSQ the redundancy is 
directly dependent on the number of channels. Whereas, in the 
case of two channels, one can trigger the redundancy level by the 
number of diagonals filled in the index assignment matrix [3]. 
The graphic representation of the redundancy versus the number 
of channels, given by (8), is shown in Fig. 3. The theoretical 
boundary of the redundancy 0( 1)M R−  is reached when the 
stream is replicated over M  channels and is represented by the 
upper curve in the graph. It is noticeable that the redundancy 
between the channels monotonically decreases as the 
quantization level p increases.  
 

3. CODING SCHEME 
 
In this section, we illustrate the use of the proposed EMDSQ 
into a wavelet-based coding scheme, for the particular case of 

2M =  and 0ξ =  (see Fig. 1). The coding algorithm relies on the 
QT coding of the significance maps [9], and is referred to as 
Multiple Description-QT (MD-QT) coding.  
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Fig. 4. Four-level representation of 1, p

SQ  for two-channel 
EMDSQ for an example with granular region ranging from 0 to 
23. The significance map coding is performed with respect to the 
set of thresholds ,1pT  with the rate of decay given by (10). 

The algorithm determines the significance of the coefficients 
with respect to a predefined set of thresholds ,p mT , which are 
determined for each quantization level p , 0 p P≤ ≤  and channel 
index m , 1 2m≤ ≤ . For each channel, the starting thresholds 

,P mT  are of the form ,1 2PT T=  and ,2PT T=  respectively. Since 
it is not desirable that the quantizer is characterized by an 
overload region, the T value is related to the highest absolute 
magnitude maxw  of the wavelet coefficients as follows: 

( )2 maxlog 3 1
2

w
T

 + =  (9) 
Hence, the maximum number of quantization levels is 

2 maxlog ( 3) 1P w= +   . In general, the thresholds used for each 
channel m , 1 2m≤ ≤  are given by:  

1,
, (( 1)%2)

(( 1)%2) (( 2 )%2)
3

4 3

P x m
P x m x m

x m x m

T
T

− +
− + −

+ − + −=  (10) 

with P x p− = .  
Fig. 4 depicts the thresholds ,1pT  corresponding to the first 
channel EMDSQ ( 1m = ) for an example with granular region 
ranging from 0 to 23.  
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4. EXPERIMENTAL RESULTS 
 

To perform the comparison between the EMDSQ and MDUSQ 
[7], both quantizers are applied on a memoryless Laplacian 
source of random generated numbers with zero mean and 

14.6σ = , simulating a wavelet subband. Fig. 5 shows that 
comparable results are obtained for the side channel(s) and that 
the EMDSQ outperforms MDUSQ for the central channel. 
Similar experimental results were obtained varying the standard 
deviation within the range 12 90σ< < . 
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Fig. 5. Comparative side and central rate-distortion performance 
between EMDSQ and MDUSQ. The quantizers are applied on a 
256x256 matrix of Laplacian random generated numbers with 
zero mean and 14.6σ = .  
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Fig. 6. Comparative side and central rate-distortion performance 
obtained on Lena 512x512 with the MD-QT codec employing 
EMDSQ and MDUSQ respectively.  

Similar to EMDSQ, the MDUSQ has been integrated in the MD-
QT coding scheme, resulting into a common entropy-coding 
module for both types of quantizers. The results shown in Fig. 6 
obtained on the Lena image reveal that on the central channel the 
EMDSQ outperforms MDUSQ with 0.52-1.08 dB. Similarly, the 
results obtained on a common image data set given in Table 7 
show that in comparison to MDUSQ, the proposed EMDSQ 
provides constantly better rate-distortion performances on the 
central channel for all the rates.  
 

5. CONCLUSIONS 
 

The paper presents a new type of embedded scalar quantizers, 
called here EMDSQ, as well as a comparison between the former 
and the MDUSQ. Designed for progressive image transmission 
over unreliable channels, the EMDSQ fulfill the requirement of a 
high level of redundancy. For the targeted high level of 
redundancy, the EMDSQ outperform the MDUSQ for the central 
channel. Thus, for an erosion channel model characterized by 
burst errors, coding techniques based on EMDSQ will provide 
better rate-distortion performance. 

Image Quant. 0.125 0.25 0.5 1 2 4
EMDSQ 23.90 25.72 28.52 32.56 37.75 44.52
MDUSQ 23.63 24.87 28.20 32.16 37.15 42.85
EMDSQ 30.98 34.31 37.94 41.46 44.82 50.04
MDUSQ 30.15 33.40 37.15 40.66 43.78 48.88
EMDSQ 26.09 28.48 31.23 34.84 39.72 44.92
MDUSQ 25.62 27.73 30.46 33.85 38.30 43.80
EMDSQ 23.32 25.26 28.08 31.78 37.06 44.43
MDUSQ 22.59 24.80 27.50 30.87 36.21 43.08
EMDSQ 20.99 21.90 23.51 25.97 29.59 35.50
MDUSQ 20.59 21.57 22.91 25.25 28.94 34.51

0.54 0.66 0.61 0.76 0.91 1.25

mandrill.raw

average mean diff. Kk

boat.raw

camera.raw

barb.raw

bird.raw

 
 

Table 7. Performance (PSNR) of the central reconstruction of 
MD-QT coding based on EMDSQ and MDUSQ for bit rates 
ranging from 0.125 to 4 bpp. 

For the particular case when an entire channel is lost, the 
experiments show comparable results for the side channels. 
Moreover, the generalization of the coder for an arbitrary 
number of channels leads to the possibility of designing realistic 
coders for practical multi-channel communication systems. 
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