EDITING BY VOICE AND THE ROLE OF SEQUENTIAL SYMBOL SYSTEMS
FOR IMPROVED HUMAN-TO-COMPUTER INFORMATION RATES

Nils Klarlund

AT&T Labs—Research, 180 Park Avenue, Florham Park, NJ 07932

ABSTRACT

Composing text on the computer is usually heavily depen-
dent on editing, such as moving text around, correcting spac-
ing, and inserting punctuation characters. Dictation sys-
tems, based on automatic speech recognition, are not known
for their efficiency as an editing tool—something that sig-
nificantly reduces their potential for freeing the user from
the keyboard.

Speech recognition has almost invariably been tied to
natural language, but we point out that this approach is in-
herently disadvantageous in important ways. Instead, given
the evidence that humans routinely become experts at se-
quencing signs not related to natural language, we propose
that editing command languages should rely on symboliza-
tions similar to that of the keyboard.

We introduce ShortTalk, an editing language whose com-
mand sequences are primitive symbol combinations that are
not confusable with dictation. We argue that ShortTalk by
construction may solve common editing situations much more
efficiently than by use of keyboard and mouse.

Our experimental results for ShortTalk indicate that an
average information rate of about 16 bps for editing com-
mands is achievable. Thus, editing by speech may be more
efficient than by non-verbal means.

1. INTRODUCTION

The physical strain of using computers is significant[1]. But
for the apparently large number of computer users suffering
from CTD (Cumulative Trauma Disorder such as tendinitis
of the forearms) or other soft tissue pain (carpal tunnel syn-
drome, neck pain, etc.), dictation systems have largely been
a disappointment according to anecdotal evidence (and doc-
umented, spectacular business failures).

Thus, there is a need for principled efforts at designing
speech-operated tools that interface with the human mind as
naturally and as efficiently as the keyboard.

But, for laypeople and researchers alike, speech recog-
nition is linked to natural language. Indeed, the orthodox
view of the role of voice input is that users may expect to
engage in a dialogue with the machine using ordinary lin-
guistic constructs, see [2]. For many applications, such as
for call processing, see [3], there is indeed no alternative,
since users are assumed to be unskilled. In addition, there
is a semantic significance to natural language, because nat-
ural language is what is used when a caller converses with a
human agent.

In this paper, we argue on the contrary that for spoken
command and control there is little communicative signifi-
cance to natural language and that humans are best served
with primitive systems of sequentially combined symbols.

0-7803-7663-3/03/$17.00 ©2003 IEEE

V-728

Our belief is that efficiency of user interfaces departs from
an understanding of the human ability to learn and sequence
symbols with ordained technical meanings.

We formulate two principles for realizing this goal for
dictation systems: stenophonic concept naming—fundamen-
tal concepts are treated as symbols that receive short pronun-
ciations—and unambiguous orthogonality—the command
grammar must allow concepts to be sequenced combinato-
rially with few restrictions while preserving distinctness of
commands from fragments of natural language.

Our techniques are exemplified through the artificial lan-
guage ShortTalk, which has been developed over a six-year
period to be a comprehensive and universally effective tool
for text manipulation, whether the domain is e-mail writing,
XML content authoring, programming, etc. We provide a
summary of ShortTalk that illustrate the considerable ex-
pressive power achievable by our techniques.

We report on a long-term experiment, which has shown
that the average command entropy rate of ShortTalk may
reach 16bps. Taken together, our cognitive arguments, anal-
ysis, and results indicate that current speech user interfaces
may be dramatically improved if overlooked human capac-
ities for acquiring and sequencing symbols are acknowl-
edged. The success of Graffiti, a simplified and artificial
representation of letters, should inspire research in dictation
systems, where user interfaces lag the impressive advances
in the speech recognition technology itself.

1.1. Editing as symbol sequencing

Areas of automation where speech recognition has been ap-
plied include form filling on PDAs, operating household ap-
pliances, or information retrieval over the phone. Intrinsi-
cally different from these domains, text editing is a manifes-
tation of the trained mind and its task-oriented information-
processing facilities. And, importantly, there is no natural
efficient way to talk about editing, neither to a human nor
to a computer. Indeed, most of us have experienced jointly
editing a paper in front of the computer screen, where we
feel frustrated from the inadequacy of our language to con-
vey our editing intentions. A graphical mixture of proof-
reader’s marks, lines, and boxes seems to be the most effi-
cient vocabulary for expressing changes to a text.
Innumerable text editors have addressed the very same
problem through different modalities. Later ones have used
the graphical abilities provided by pointing devices, but early
editors were entirely dependent on the definition of signs
whose syntax is described in a key mapping. The set of key
sequences in advanced editors, such as (Ctrl-X)(Ctrl-S) (the
“save file”-operation in Emacs), are made out of perhaps
one or two hundred symbols that typically can be combined
in one-, two, or three-symbol sequences. Although most

ICASSP 2003

users learn only a fraction of the command vocabulary, all
users eventually string together effortlessly a subset of the
symbols.

We believe that this ability to sequence simple sequences
of actions is deeply rooted, and that mastering such skills is
easier than mastering the use of natural language for editing.
Indeed, there is evidence that sequential learning is a pri-
mate feature, not an exclusively human one[4], whereas nat-
ural language appear to be far beyond the abilities of other
primates. Even so, non-human primates have been reported
to spontaneously sequence pictographs, thereby demonstrat-
ing combinatorial processes[5].

The human affinity for sequencing is more impressive:
word constituents are stringed together to form words in in-
flicted languages, alphabetic keys are sequenced as words
on the computer, and nodes are stringed together to form
music. The evidence seems overwhelming: motivated hu-
mans easily acquire and express simpler systems of signs
than the whole of natural language. Sometimes systems
are expressed manually, sometimes orally, and sometimes
through both modalities as in the of case words (enounced
or typed) or in the case of music (sung or played).

The specific question of how the mind expresses simple
sequences of signs that stand for editing operations was the
subject of “The Psychology of Human-Computer Interac-
tion” [6]. In this book, a cognitive model GOMS (Goals,
Operators, Methods, Selection rules) based on production
rule systems was shown to be successful in predicting the
time it takes for users to accomplish editing tasks. A tenet of
this approach is: the skill of text editing is acquired through
training that turns symbolic problem solving into a set of
readily-available methods. These methods are selected by
brief cognitive processing when tackling editing situations.
The GOMS model thus lends further credibility to our the-
sis that text editing is mediated through combinatorial pro-
cesses that do not involve natural language.

1.2. Natural language, efficiency, and mode problem

Our aim is to suggest principled ways for obtaining efficient
command and control user interfaces. Having explained the
potential and importance of primitive systems of signs, we
must briefly touch on the subject of why natural language
with its almost infinite richness does not appear to be a so-
lution to the problem, even if it could be understood as well
by a computer as by a human.

Paradoxically, a main drawback of natural language for
editing is that it is inefficient. When used in its most ba-
sic way where just individual nouns are exclaimed, natural
language often induce punishments, rather than rewards: in-
serting “!” three times would become “exclamation mark,
exclamation mark, exclamation mark.” Saying “insert three
exclamation marks” is better, but still slower than using the
keyboard.

Human nature is clearly against learning complex sys-
tems that do not provide superior performance over already
acquired methods. From studies of editing efficiency[6], we
know that performance is strongly correlated with the num-
ber of keystrokes needed for each editing task. It is reason-
able to expect that a similar situation holds for spoken input:
the fewer words per task, the better performance.

To give some rough quantitative estimates, we use the
keystroke-level model[6, p. 264], where the times for indi-
vidual operations are estimated as: K = .20s (pressing a

key for an average skilled typist; a modifier key is estimated
to also average K); and H = .4s (home hand(s) from device
to device). We regard the arrow keys and the usual six keys
above them as separate devices, since they are away from
the standard position of the hands. In addition, we have de-
fined S = .25s to be the average time it takes to pronounce
a syllable. With these numbers, the time to type three ex-
clamation marks can be estimated to be (4 - K = .8s), since
the first exclamation mark requires pressing the shift key.
The time to say “exclamation mark” three times becomes
3-5-S = 3.75s and the time to say “insert three excla-
mation marks” becomes 8 - S = 2.0s. Thus, for this simple
operation, the keyboard is clearly superior by a factor of two
or three. Similarly, it might be natural to say “go to the be-
ginning of the line” (9 - S = 2.3s), but it is not gratifying:
the keyboard is three times faster (H + K = .6s).

These observations extend to most editing operations
that are mimicked by natural language commands. But,
there is an additional and severe mode problem: in order
to distinguish between commands and dictation, the inter-
faces of current commercial dictation systems require the
user to make an explicit pause before and after each com-
mand. We estimate that such a user-issued pause will typ-
ically have the length S of one syllable. Indeed, an edit-
ing operation to convert a plural “s” into a possessive ““’s”
would be quick on the keyboard (where we assume that the
cursor is at the space after the word): move left two charac-
ters, hit apostrophe key, and move right two characters, but
rather excruciating by voice: “pause, move left two char-
acters, pause, apostrophe, pause, move right two charac-
ters, pause”, where the extra pauses at the beginning and
the end may or may not be necessary. The spoken utterance
to fix the “s” above takes 18 - S = 4.5s (neglecting the ex-
tremal pauses), whereas the keyboard expression might be
estimated to be 3 - H+ 5 « K = 2.2s (neglecting the final
homing operation).

The need to insert pauses is a highly unnatural restric-
tion. The reader might ponder the commercial potential of
a keyboard with similar restrictions: unless there is a pause
between key presses the normal meaning of a command key
is suppressed and the label of the key is inserted instead.

To overcome the mode problem, we will already at this
point make the decision to make a command language un-
ambiguous by construction: no command language con-
struct should be confusable with common segments of nat-
ural language. Consequently, dictation and commands may
be fluently interspersed.

1.3. Natural language as it is spoken

The preceding discussion has not touched upon the use of
natural language as other than a syntactic disguise for keys.
Maybe the potential of natural language is realized only
when it is used as it is spoken. With problem domain-
specific vocabulary extensions, natural language might be-
come an efficient tool. Even if that was the case, the ques-
tion is hypothetical: the ability of a machine to understand
human language is meager. And, if complex algorithms
were invented that would interpret spoken human editing in-
tentions, then the vagueness of human language might still
be a serious obstacle to using it efficiently.

V-729

1.4. Related Work

That natural language for editing may not be that easy to
learn or rewarding to use has been discovered by users. A
journalist calls it an “illusion” [7], while she suggests a con-
structed editing notation that has little to do with natural
language. This approach differs from ours in one impor-
tant aspect: it assumes the pause technique for command
disambiguation, so there is no emphasis on preventing con-
fusion with natural language. The approach does not seem
to identify as many primitive editing concepts and to allow
as flexibly sequencing of them as our proposal.

In the area of spoken dialogue systems, the somewhat
renegade view that the most value from speech recogni-
tion is derived from simplified user interfaces has also been
voiced: the Universal Speech Interface is characterized by
a small, fixed set of key words and ways of using the inter-
face [8]. However, our results probably do not reflect on this
approach (or vice versa) since text editing is a much more
specialized skill than say inquiring about movie times.

Perhaps the most important problem with dictation sys-
tems is poor error correction facilities. Even for transcrip-
tion tasks [9], the keyboard + mouse combination may be
two and half times faster among novice users. Note that ef-
ficient editing by voice may help alleviate error correction.

The specialized problem of programming by voice has
already received some attention. VoiceGrip[10] is a system-
atic approach to three main problems: (1) the pronunciation
of symbols that are not English words, (2) the entering of
program constructs, and (3) search. The VoiceGrip tech-
nique for (1) is to make symbols pronounceable in natural
ways: for example, “CurrRecNum” is pronounced “current
record number”. This technique might advantageously be
combined with ShortTalk. The techniques for (2) and (3)
rely on natural language representations of programming
constructs, but no general approach to commonplace editing
situations that are easily solved by keyboard is suggested.

Contradicting the common hypothesis that natural lan-
guage by the virtue of being natural is immediately natural
to use is the study of Karl, Pettey, and Shneiderman[11].
They showed that when users are asked to use a simple
set of commands a natural language such as “page up” in-
stead of using the corresponding keys, task performance
may be severely affected for non-trivial editing situations.
Although the authors note that mouse activation of com-
mands is slower than speech activation according to their
empirical results, they draw the surprising hypothesis that
speech itself interferes with thinking: the use of speech for
commands effects adversely short-term memory.

We believe that there is a much simpler explanation: the
lack of training using the small vocabulary of voice com-
mands is the source of the cognitive load. It becomes natu-
ral to use the two words “page up” for the specific effect
of moving the page on the screen upwards only after an
amount of training that makes their use a trained reflex. Im-
portantly, it may therefore matter less what the specific syn-
tax is, or whether the syntax is “natural” altogether.

2. OVERVIEW OF SHORTTALK

ShortTalk is a collection of symbolized editing concepts that
can be stringed together in “phrases”, consisting of mostly

one or two, sometimes three or four concepts. We discuss
some of them; for details see[12].

The forward and backward distinction Editing ac-
tions are often expressed relative to the text cursor. Thus
direction, forwards or backwards from the cursor, is a pri-
mary piece of knowledge implicit in our cognition about
editing situations. It would be a waste of mental knowledge
not to systematically represent this concept. The ShortTalk
solution is simple and terse: the vowel denotes direction.
For example, “go aift hello” means place the cursor after
the occurrence of “hello” following the current position; and
“go ooft hello” means place the cursor after the occurrence
of “hello” preceding the cursor. So, a phonic principle is:
“00” means backward and ““ai” means forward.

Actions that may stand alone Pressing the (space bar)
is “spooce” for half the syllabic effort of saying “space bar.”
The same applies to “loon” for (return) usually called “new
line” in Natural Language Systems. It saves the user the of-
fense of having dictation such as “the new line is that” mis-
interpreted (at the expense of an acquatic bird). Keys like
up and left arrow have similar mnemonic names: go up be-
comes “goop”, that is “go oop” (“00” sound for backwards
motion alterates the vowel of “up”) and up arrow becomes
“gloof” for “go left” in a similar manner.

Numbers Scottish “ane” is for one, “twain” for two,
“traio” for three, “fairn” for four, and “faif” for five. We
do not use higher numbers, since they eye can quickly iden-
tify only four or five items. And, counting does not appear
to be a productive part of editing. The command “line faif”
means “go down five lines”. By the ai/oo principle, “line
foof” therefore means “go up lines”. So, we have ten useful
and efficient numerals that eliminate the homonymic con-
fusions among “to”, “2”, “two”, and “too” (among other
ambiguities). The numerals are in fact crucial to the disam-
biguation of commands from dictation, but they can never
appear by themselves. That is why “line twain” can be em-
bedded in continuous dictation as a command, while “Mark
Twain” still may occur as dictation.

Characters, words, lines, paragraphs... Structural con-
cepts for various kinds of pieces of text are: “char” (as in
charcoal) for characters, “word” for words, “line” for lines
and “para” for paragraphs. Altogether about 10 such con-
cepts can be combined with numerals, and they form an ef-
fective set of tools for just moving the cursor. For example,
the command “word twoon” puts the cursor at the second
word before the current word.

At this point the number of concepts introduced is lit-
tle relative to number of sequences: the ai/oo principle, the
numerals “ane”, “twain”, ..., “faif”’, and ten mostly obvious
and known terms for pieces of text yield 100 commands that
all correspond to common editing situations.

Common places When a user says “this paragraph” un-
der a natural language paradigm, does he or she refer to the
paragraph where the mouse pointer is or where the text cur-
sor is? ShortTalk rejects such ambiguity. Instead, there are
mnemonic symbolizations: “hare” is “here” for where the
cursor is and “tair” is "there” for where the pointer is. But
there are more useful positional concepts not made available
in most editors although they are latent in our perception of
editing. For example, ShortTalk keeps track of where the
cursor was before the last cursor excursion. This position
called “mairk” marks the end of what was inserted last when
the cursor if the cursor is no longer there. Mairk is visually

V-730

denoted by a brown highlighting of the position. To go to
the mairk, the user says “gairk” for “go to mairk.” (This
concept is borrowed and extended from the GNU Emacs
text editor.) Another essential concept is that of the position
at the start of the last inserted text. This position is called
“loost.” Naturally, one goes to “loost”, which is marked
green, by simply saying “goost.”

Actions To capitalize is “caip,” to uppercase is “aipper”,
to fix spacing and capitalization is “fix”, etc. So, if after
the user said “we helped it going” and the text now looks
like “the most we had.we helped it going” with the cursor
now being at the end, the utterance “Fix loost” repairs the
spacing before “we helped”. This operation does not move
the cursor. Compare this to reaching for the mouse, mov-
ing it to locate the period, then clicking it, then find the
keyboard again to delete the wrongly-cased letter, insert-
ing the uppercased one, and inserting spaces, then reaching
for the mouse again to reposition the cursor, which can be
estimated to take 5.2s. This example illustrates why the se-
quencing of elementary concepts makes ShortTalk several
times faster than traditional mechanical interfaces in many
common editing situations.

Searching The principles are very simple:“baif” is for
the position before text to look for and “aift” for the position
after. The vowel shift ai/oo determines search direction. In
the above example, we might also have said “fix boof we”
to fix the problem.

Special characters The ShortTalk name for “!” is “clam”
(as in “exCLAMation mark™). So, “clam traio” inserts three
exclamation marks. The estimated time 3 - S = .75s com-
pares with typing. All keyboard symbols have monosyllabic
expressions. A keyboard symbol cannot occur by itself, but
may occur with another symbol such as in “col rye” for “:)”.
In this way, the speech recognizer can distinguish keyboard
symbols and their sequences from natural language.

Summary Altogether, ShortTalk defines approximately
170 general concepts, including 33 names for special sym-
bols (“clam”), 20 window and file actions (“switch”, “save”),
12 editing actions (“fix”, “caip”), 15 structural designators

“word”, “senten”), 10 numerals (“traio”), 10 special keys
(“spooce”), 8 text movement commands (“smack’), and 7
search concepts (boof”). For comparison, a keyboard la-
bels around 150 concepts, but may expose hundreds more.

)

3. PRINCIPLES OF CONSTRUCTION

The ShortTalk symbolization and syntax illustrate two de-
sign principles for spoken command and control interfaces
that are integrated with transcription.

e Identify essential concepts as symbols that receive
mnemonic names and that are stenophonic, i.e. con-
sisting of preferably only one syllable.

e Construct a highly orthogonal (permissive) command
grammar. The grammar must be non-ambiguous: a
parser must be able to identify the commands in each
sequence of words that mixes natural language and
commands.

Note that one appealingly simple method for achieving
non-ambiguity is to make all commands be of the form XY,
where only Y is required to not be a word in the natural

language (but indeed could be closely related to one, for
example by a vowel shift).

4. SHORTTALK: THE CASE STUDY

For approximately 2 1/2 months, the author has recorded all
his mouse, keyboard, and speech activity within the Emacs
editor, augmented with ShortTalk. The logs, available at
[12], reflect e-mail writing, editing technical papers, and
programming by an experienced ShortTalk user. Out of
30,000 ShortTalk commands captured, 1060 are distinct.
The observed entropy—measured as ¥1<;<1060 — i lOg pi,
where p; is the observed frequence of the ith operator—is
7.3 bits/operator—and the distribution of operators is pic-
tured below on a doubly logarithmic scale:

The x-axis is the index of a command (the most
frequent command has index 1, the second in-
dex 2, and so on) and the y-axis is the fre-
quency of the command. The plot seems to
illustrate Zipf’s Principle of Least Resistance:
the frequency of the kth command is approxi-
mately 3% /k. We measured the average num-
ber of syllables per ShortTalk command to be
1.80.

1 10 100 1000

With S = .25s, the use of ShortTalk has averaged 16.1
bits per second of editing information (not counting the ar-
guments of operators). For reference, the entropy of spoken
English at a dictation rate of 120 wpm is approximately 16
bps (assuming perplexity of 247 as measured on the Brown
Corpus). And, if each ShortTalk concept was bound to a
key+modifier combination (of duration 2-K = .4s), then the
entropy rate would be 7.3 /(1.77.4)bps=10.3 bps, since we
have measured an average of 1.77 symbols per command.

The logs capture some 60,000 words of dictation, indi-
cating the importance of spoken commands in practical use:

for every two words dictated, a command was issued.
5. REFERENCES

—

[1] E.Pascarelli and D. Quilter, Repetitive Strain Injury, John Wiley and
Sons, 1994.

[2] Philip R. Cohen and Sharon L. Oviatt, “The role of voice input for

human-machine communication,” Proc. Natl. Acad. Sci. USA, vol.

92, no. 22, pp. 9921-9927, 1995.

[3] “How May I Help You?SM,» http://www.research.att.
com/“algor/hmihy/.

[4] Christopher M. Conway and Morten H. Christiansen, “Sequential
learning in non-human primates,” Trends in cognitive Sciences, vol.
5, no. 12, 2001.

[5] E. Sue Savage-Rumbaugh and Duane M. Rumbaugh, “The emer-
gence of language,” in Tools, Language and Cognition in Human
Evolution, Kathleen R. Gibson and Tim Ingold, Eds., pp. 86—108.
Cambridge University Press, 1993.

[6] Stuart K. Card, Thomas P. Moran, and Allan Newell, The Psychology
of Human-Computer Interaction, Lawrence Erlbaum Ass., 1983.

[7]1 Kimberly Patch, “Speech command and control,” http://
www.scriven.com/RSI/RSIdata/KimsMacros/
Kims_Macro_Talk.html, 2002.

[8] Stefanie Shriver, Arthur Toth, Xiaojin Zhu, Alex Rudnicky, and Roni
Rosenfeld, “A unified design for human-machine voice interaction,”
in CHI, 2001.

[9] John Karat, Daniel B. Horn, Christine A. Halverson, and Clare-Marie
Karat, “Patterns of entry and correction in large vocabulary continu-
ous speech recognition systems,” in CHI 1999, 1999.

[10] Alain Desilets, “VoiceGrip: a tool for programming-by-voice,” In-
ternational Journal of Speech Technology, vol. 4, pp. 103-16, 2001.

[11] L. Karl, M. Pettey, and B. Shneiderman, “Speechactivated versus
mouse-activated commands for word processing applications: An
empirical evaluation,” 1993.

[12] “Shorttalk Web site,” http://www.research.att.com/
“klarlund/ShortTalk.

V-731

