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ABSTRACT

In this paper we propose a piece-wise linear classifier for use as
the decision stage in a two-modal verification system, comprised of
a face and a speech expert. The classifier utilizes a fixed decision
boundary that has been specifically designed to account for the ef-
fects of noisy audio conditions. Experimental results show that in
clean conditions the proposed classifier is outperformed by a tra-
ditional weighted summation decision stage (using both fixed and
adaptive weights); however, in high noise conditions the classifier
obtains better performance than the fixed approach and has similar
performance as the adaptive approach, with the advantage of having
a fixed (non-adaptive) structure.

1. INTRODUCTION
Recently there has been a lot of interest in multi-modal biometric
person verification systems [1]. A biometric verification (or au-
thentication) system verifies the identity of a claimant based on the
person’s physical attributes, such as their voice, face or fingerprints.
Apart from security applications (e.g., access control), verification
systems are also useful in forensic work (where the task is whether
a given biometric sample belongs to a given suspect) and law en-
forcement applications [16].

A multi-modal verification system is usually comprised of sev-
eral modality experts (e.g., speech and face experts). Each expert
provides an opinion on a claim, which, for mathematical conve-
nience, is in the [0,1] interval. The opinions from

���
modality ex-

perts then form an
� �

-dimensional opinion vector, which is used
by a decision stage to make the final accept or reject verdict. The
decision stage is often a binary classifier discriminating between
true claimant and impostor classes [1].

Multi-modal systems fall into two categories: non-adaptive and
adaptive. While non-adaptive multi-modal systems exhibit lower
error rates and are more robust to environmental conditions than
mono-modal systems, their performance can still significantly de-
grade when one of the experts is processing noise corrupted infor-
mation (e.g., speech with ambient noise) [10]. In adaptive multi-
modal systems, the contribution of the noise-affected expert is var-
ied according to current environmental conditions, in an attempt to
decrease the performance degradation [11].

In this paper we propose a structurally noise resistant piece-
wise linear (PL) classifier for use in a non-adaptive system. In con-
trast to an adaptive system, where the decision boundary is effec-
tively adjusted to take into account noisy conditions, the proposed
classifier utilizes a fixed decision boundary that has been specifi-
cally designed to account for the effects of noisy conditions. This
approach has the advantage of having a simpler structure than an
adaptive approach.�
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The rest of the paper is organized as follows. In Sections 2 and 3 the
speech and face experts are described, respectively. In Section 4 the
traditional weighted summation decision stage is described, as well
as a method to adjust the weights so the contribution of the speech
expert is decreased is noisy conditions. The proposed PL classi-
fier is described in Section 5. Section 6 is devoted to experiments
comparing the proposed classifier against the traditional weighted
summation decision stage (in both adaptive and non-adaptive con-
figurations).

2. SPEECH EXPERT
The speech expert is comprised of two main components: speech
feature extraction and a Gaussian Mixture Model (GMM) classi-
fier. The speech signal is analyzed on a frame by frame basis, with
a typical frame length of 20 ms and a frame advance of 10 ms. For
each frame, a 37-dimensional feature vector is extracted, comprised
of Mel Frequency Cepstral Coefficients (MFCC) [7], their corre-
sponding deltas [9] and Maximum Auto-Correlation Values (which
represent pitch and voicing information) [15].

The distribution of feature vectors for each person is modeled
by a GMM. Given a set of training vectors, an

���
-mixture GMM

is trained using a k-means clustering algorithm followed by 10 iter-
ations of the Expectation Maximization (EM) algorithm [2, 4].

Given a claim for person � ’s identity and a set of feature vec-
tors �
	���
�������������� supporting the claim, the average log likelihood
of the claimant being the true claimant is calculated using:��� �"! #%$'&)( �� �+* � ������%,.-0/21 �435 � ! #%$�&

(1)

where 1 �435 ! #6&�( * �879 ���;: 9�< �435>= 3? 9A@CBD9 &
(2)

and
#�(FE : 96@ 3? 9A@�BG9IH �)79 ��� (3)

Here J $
is the model for person � .

���
is the number of mixtures,K 9 is the weight for mixture L (with constraint * �)79 ��� : 9 (NM

), and<PO 
�;Q 
R'SUT�V is a multi-variate Gaussian function with mean
3? and

diagonal covariance matrix B [4]. Given a set
EU#%W HYXW ��� of Z back-

ground person models for person � , the average log likelihood of
the claimant being an impostor is found using:�[���\! # $ &;( ,.-0/ ] M^ X_W ����`badc �[���\! #AW4&fe

(4)

The set of background person models is found using the method
described in [8]. An opinion on the claim is found using:g (h�[���\! #6$[&�ij�[���\! # $ &

(5)

The opinion reflects the likelihood that a given claimant is the true
claimant (i.e., a low opinion suggests that the claimant is an im-
postor, while a high opinion suggests that the claimant is the true
claimant). Before using the opinion in a multi-modal system, map-
ping to the k l S0mUn interval is usually performed [11].

3. FACE EXPERT
The face expert is similar to the speech expert. It differs in the
feature extraction method: Principal Component Analysis (PCA)
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[13] is employed to extract features from frontal face images. Given
a face image matrix � of size ����� (in our experiments we use
64 � 56), we construct a vector representation by concatenating all
the columns of � to form a column vector 
� of dimensionality ��� .
A feature vector 
� of dimensionality � is then derived from a face
vector 
� using: 35 (	��
[� 3� i 3��
 &

(6)

where � contains � eigenvectors (with largest corresponding eigen-
values) of the training data covariance matrix, and

3��

is the mean

of training face vectors. Typically, � 	��dl .

4. WEIGHTED SUMMATION DECISION STAGE
A straightforward way to reach a verification decision given several
expert opinions is via weighted summation, followed by threshold-
ing [14]. The opinions of

���
experts are first fused as follows:

� ( ���_� ����� � g � (7)

where � � is the opinion of the i-th expert (in the [0,1] interval), with
corresponding weight � � (also in the [0,1] interval). The weights
have a ��� ������! �#"%$ constraint. The verification decision is then
reached as follows: given a threshold & , the claim is accepted when��' & (i.e., true claimant); the claim is rejected when

��( & (i.e.,
impostor). Eqn. (7) can be modified to:) � 3g &;(
3� 
 3g i+*

(8)

where
3� 
 (�, � �.- �/������ and

3g 
 (�, g �0- �/�� ��� . The decision is accord-
ingly modified to: the claim is accepted when � O 
� V ' l ; the claim
is rejected when � O 
� V ( l .

It can be seen that Eqn. (8) is a form of a linear discrimi-
nant function [4], indicating that the procedure of weighted sum-
mation and thresholding creates a linear decision boundary in

���
-

dimensional space which discriminates between the true claimant
and impostor classes.

4.1. Adaptivity
When fusing opinions from a speech and a face expert, it is possi-
ble to decrease the contribution of the speech expert when working
in low audio SNR conditions. A weight update method presented
in [11] is summarized as follows. Every time a speech utterance
is recorded, it is preceded by a short segment which contains only
ambient noise. From each training utterance, MFCC feature vec-
tors from the noise segment are used to construct a global noise
GMM,

#
noise. Given a test speech utterance, 1 noise MFCC fea-

ture vectors,
E635 � H � noise����� , representing the noise segment, are used

to estimate the utterance’s quality by measuring the mismatch from#
noise as follows:2 ( M

1 noise

� noise_� ��� ,.-0/21 �435 � ! #
noise

&
(9)

The larger the difference between the training and testing condi-
tions, the lower 3 is going to be. 3 is then mapped to the k l S0mUn
interval using a sigmoı̈d:2

map
( MM/4 ` a�c , i65 � 2 i87 & - (10)

where 9 and : describe the shape of the sigmoı̈d. The values of9 and : are selected so that 3 map is close to one for clean training
utterances and close to zero for training utterances artificially cor-
rupted with noise (thus this adaptation method is dependent on the
noise type that caused the mismatch).

Let us assume that the face expert is the first expert and that
the speech expert is the second expert. Given an a priori weight�<;�= apriori for the speech expert (found for clean conditions), the
adapted weight for the speech expert is found using:

� ; ( 2
map � ;�= apriori (11)

Since we are using a two modal system, there is a > ;����� � � 	 m
constraint on the weights; thus the corresponding weight for the
face expert is found using: � � 	 m<? � ; .

5. STRUCTURALLY NOISE RESISTANT PIECE-WISE
LINEAR CLASSIFIER

5.1. Motivation
For a given claim, let us construct an opinion vector 
� 	 k�� � � ; n 
 ,
where � � is the opinion of the face expert and � ; is the opinion of
the speech expert. Moreover, let us refer to the distribution of opin-
ion vectors for true claims and impostor claims as the true claimant
and impostor opinion distributions, respectively.

The opinion distributions for clean and noisy audio conditions
are shown in Figs. 1 and 2, respectively. In noisy conditions, the
speech signal was corrupted with additive white Gaussian noise,
simulating ambient noise.

As can be observed, the main effect of noisy conditions is the
movement of the mean of the true claimant opinion distribution to-
ward the � � axis. This movement can be explained by analyzing
Eqn. (5). Let us suppose a true claim has been made; in clean con-
ditions @ O �BA J $ V will be high while @ O �BA J $ V will be low, causing� ; (the opinion of the speech expert) to be high. When the speech
expert is processing noisy speech signals, there is a mismatch be-
tween training and testing conditions, causing the feature vectors
to drift away from the feature space described by the true claimant
model ( J $

). This in turn causes causes @ O �BA J $ V to decrease. If@ O �BA J $ V decreases by the same amount as @ O �BA J $ V , then � ; is
relatively unchanged. However, to model possible impostors, the
parametric model representing J $ [see Eqn. (4)] may cover a wide
area of the feature space. Thus while the feature vectors may have
drifted away from the feature space described by the true claimant
model, they may still be “inside” the space described by the im-
postor model, causing @ O �BA J $ V to decrease by a smaller amount,
which in turn causes � ; to decrease.

Let us now suppose that an impostor claim has been made.
In clean conditions @ O �	A J $ V will be low while @ O �BA J $ V will be
high, causing � ; to be low. The true claimant model does not rep-
resent the impostor feature space, indicating that @ O �BA J $ V should
be consistently low for impostor claims in noisy conditions. As de-
scribed above, the parametric model representing J $ may cover
a wide area of the feature space, thus even though the features
have drifted due to mismatched conditions, they may still be “in-
side” the space described by the impostor model. This indicates
that @ O �	A J $ V should remain relatively high in noisy conditions,
which in turn indicates that the impostor opinion distribution should
change relatively little due to noisy conditions.

While Figs. 1 and 2 were obtained by corrupting the speech
signals with additive white Gaussian noise, we would expect a sim-
ilar movement of the mean of the true claim opinion distribution for
other noise types. Generally any noise types alters the features ob-
tained, which would cause @ O �BA J $ V to decrease, and as explained
above, this leads to a decrease of � ; .
5.2. Classifier Definition
Let us describe the PL classifier as a discriminant function com-
posed of two linear discriminant functions:

C � 3g &)(EDF G 5A� 3g &
if g ;IH ( g ;�= �KJML7U� 3g &
otherwise

(12)

where 
� 	 kN� � � ; n 
 is a 2-dimensional opinion vector,5A� 3g & ( : � g � i g ; 4�O � (13)7U� 3g & ( : ; g � i g ; 4�O ; (14)
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and � ;�= ��J L is the threshold for selecting whether to use 9 O 
� V or : O 
� V .
Fig. 3 shows an example of the decision surface. The verifica-
tion decision is reached as follows. The claim is accepted when� O 
� V�� l (i.e., true claimant); the claim is rejected when � O 
� V�� l
(i.e., impostor).

The first segment of the decision boundary can be described by9 O 
� V 	 l , which reduces Eqn. (13) to:� ( : � g � i g ; 4�O � (15)

hence, g ; ( : � g � 4�O � (16)

If we assume � ; is a function of � � , Eqn. (16) is simply the de-
scription of a line [12], where K � is the gradient and � � is the value
at which the line intercepts the � ; axis. Similar argument can be
applied to the description of the second segment of the decision
boundary. Given K �0S � �0SbK ; and � ; , we can find � ;�= ��J L as follows.
The two lines intersect at a single point 
� ��J L 	
k � � = ��J L � ;�= �KJML n 
 ;
moreover, when the two lines intersect, 9 O 
� �KJML V 	 : O 
� ��J L V 	 l .
Hence, g ;�= ��J L ( : � g � = �KJML 4�O � (17)

and g ;�= ��J L ( : ; g � = �KJML 4�O ; (18)

which leads to: g � = �KJML ( O � i8O ;: ; i : � (19)

g ;�= �KJML ( : ; � O � i O ;: ; i : �
	 4�O ; (20)

5.3. Structural Constraints and Training
As described in Section 5.1, the main effect of noisy conditions is
the movement of the mean of the true claim opinion distribution to-
ward the � � axis. We would like to obtain a decision surface which
minimizes the increase of verification errors due to this movement.
Structurally, this requirement translates to a decision surface that
is as steep as possible; moreover, we would like the classifier to
be trained for Equal Error Rate (EER) performance. This in turn
translates to the following constraints on the parameters of the PL
classifier:

1. Both lines must exist in valid 2D opinion space (where the
opinion from each expert is in the [0,1] interval) indicating
that their intersect is constrained to exist in valid 2D opinion
space.

2. Gradients for both lines have to be as large as possible.

3. The EER criterion must be satisfied.
Let J PL 	 � K �YS � �0SbK ; S � ; � be the set of PL classifier parameters.
Given an initial solution (described in Section 5.4), the downhill
simplex optimization method [5, 6] can be used to find the final
parameters. The following function is minimized:� �f#

PL
&)(
� � �f#

PL
& 4�� ; � # PL

& 4������f#
PL

&
(21)
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Fig. 1. Initial and final decision boundaries used by PL classifier and dis-
tribution of opinion vectors for true & impostor claims using clean speech

where � � O J PL
V through � � O J PL

V (defined below) represent constraints
1 to 3 described above, respectively.� � �f#

PL
& ( � � 4�� ; (22)

where
� 9 ( DF G ! g 9 = ��J L ! if g 9 = �KJML�� � or g 9 = �KJML H M

�
otherwise

(23)

where � � = �KJML and � ;�= �KJML are found using Eqns. (19) and (20), respec-
tively, � ; �f# PL

& ( ����
M: � ���� 4�����

M: ; ���� (24)

and finally
� � �f#

PL
& ( ���� FA%M ����� i FR%M ����� ���� (25)

where FA% and FR% is the False Acceptance rate and False Rejec-
tion rate, respectively.

5.4. Initial Solution of PL Parameters
The initial solution for J PL is based on the impostor opinion dis-
tribution. Let us assume that the distribution can be described by a
2D Gaussian function with a diagonal covariance matrix, indicating
that it can be characterized by � R � SCR ; S�� � S�� ; � , where R 9 and � 9
is the mean and standard deviation in the j-th dimension, respec-
tively. Under the Gaussian assumption, 95% of the values for the
j-th dimension lie in the k R 9 ?���� 9 SbR 9! ��� 9 n interval [4]. Let us
use this property to define three points in 2D opinion space (shown
graphically in Fig. 4):" � (N� 5 � @$# � & ( � ? � @ ? ; 4�%�& ; & (26)" ; (N� 5 ; @$# ; & ( ' ? � 4�%�& �)( -�*,+.- /10 @ ? ; 4�%�& ; *$2435+�- /1076 (27)" � (N� 5 � @$# � & ( � ? � 4�%�& � @ ? ; & (28)

Thus the gradient ( K � ) and the intercept ( � � ) for the first line can
be found using: : � ( # ; i # �5 ; i 5 � (29)O � ( # � i : � 5 � (30)

Similarly, the gradient ( K ; ) and the intercept ( � ; ) for the second
line can be found using:: ; ( # �Di # ;5 � i 5 ; (31)O ; ( # ; i : ; 5 ; (32)

The initial solution for real data is shown in Fig. 1.

6. EXPERIMENTS

6.1. VidTIMIT Audio-Visual Database
The VidTIMIT database [11], is comprised of video and corre-
sponding audio recordings of 43 people, reciting short sentences.
It was recorded in 3 sessions; the mean duration of each sentence is
4.25 seconds, or approx. 106 video frames. For more information
on the database, please see http://www.idiap.ch/˜sanders/vidtimit/
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6.2. Experimental Setup
Session 1 was used for training the speech and face experts. Each
expert used 8 mixture client models. To find the performance, Ses-
sions 2 and 3 were used for obtaining expert opinions of known im-
postor and true claims. Four utterances, each from 8 fixed persons
(4 male and 4 female), were used for simulating impostor accesses
against the remaining 35 persons. As in [8], 10 background person
models were used for the impostor likelihood calculation. For each
of the remaining 35 persons, their four utterances were used sep-
arately as true claims. In total there were 1120 impostor and 140
true claims.

Speech signals were corrupted by additive white Gaussian noise,
with the SNR varying from 28 to -8 dB. Opinions of the experts
were mapped to the k l S0m n interval using the method described in
[11]. Based on manual observation of plots of speech signals from
the VidTIMIT database,

�
noise was set to 30 for the adaptive weight

adjustment method [see Eqn. (9)]. As in [11],
#

noise was comprised
of a single mixture. The sigmoı̈d parameters 9 and : [in Eqn. (10)]
were obtained by observing how 3 in Eqn. (9) decreased as the SNR
was lowered on utterances in Session 1 (i.e., training utterances).
The resulting value of 3 map in Eqn. (10) was close to one for clean
utterances and close to zero for utterances with an SNR of -8 dB.

Performance of the following configurations was found: face
expert alone, speech expert alone, weighted summation fusion with
fixed & adaptive weights and the proposed piece-wise linear classi-
fier. In multi-modal cases, the face expert provided the first opinion
( � � ) while the speech expert provided the second opinion ( � ; ) when
forming the opinion vector

3g ( , g � g ; - 
 .
As a common starting point, classifier parameters (for all ap-

proaches) were selected to obtain performance as close as possible
to EER on clean test data (following the standard practice in the
speaker verification area of using EER as a measure of expected
performance [3]). The parameters for the weighted summation de-
cision stage were found via an exhaustive search procedure. Given
the common starting point, the performance in noisy conditions was
then found in terms of False Acceptance rate (FA%) and False Re-
jection rate (FR%) and combined into one number:

TE
(

FA%
4

FR% (33)

where TE stands for Total Error. Results are presented in Fig. 5. It
must be noted that results for noisy conditions cannot be reported
in terms of EER; doing so would amount to adjusting classifier pa-
rameters to achieve EER performance, which can be interpreted as
a non-causal adaptation method.

The distribution of opinion vectors for clean and noisy data (as
well as the decision boundary used by the PL classifier) is shown in
Figs. 1 and 2, respectively.

6.3. Discussion and Conclusions
As can be observed in Figs. 1 and 2, the decision boundary used
by the PL classifier effectively takes into account the movement
of opinion vectors due to noisy conditions. In clean and low noise
conditions the weighted summation decision stage (using both fixed
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Fig. 5. Performance of the PL classifier compared to fixed and adaptive
weighted summation decision stage

and adaptive weights) outperforms the PL classifier. However, in
high noise conditions (SNR � 0) the PL classifier obtains better
performance than the fixed approach and has similar performance
as the adaptive approach, with the advantage of having a fixed (non-
adaptive) structure. Moreover, unlike the weight update algorithm
used in the adaptive approach, the PL classifier does not make a
direct assumption about the type of noise that caused the mismatch
between training and testing conditions.
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