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ABSTRACT and study methods for predicting the reliability of the data
We examine a time-varying, context dependent informas-trgfﬁ’lms' Ilt |_”r(;ay turn out fg_r ar;y pollcrlththmetthat only
tion fusion methodology for multi-stream authenticatiorfrJ9'0- ONly Video, or a combination otthe two streams are

ed. And this combining process is time varying in that

based on audio and video data collected simultaneous S . .
during a user’s interaction with a system. Scores obtainéd® re“.ab'l'w 'S moqeled locally as a function of time and
from the two data streams are combined based on the rePa{[—her signal propertles. . .

tive local richness, as compared to the training data or de- | "at multi-stream analysis would be beneficial is no
rived model, and stability of each stream. The results shogf'P''S€ given Doddington’s StUdX [2] V\’/’here itis S*?O.W”
that the proposed technique outperforms the use of viddgat there are speakers, termed “goats,” who are difficult
or audio data alone as well as the use of fused data streafid€c0gnize based on their voice. Speakers who are read-

(via concatenation). Of particular note, is that the perforly "écognized based on voice are termed “sheep.” In light
mance improvements are achieved for clean, high qua‘?—f this, one may choose to make an a priori decision as to
efficacy of audio vs. video data for each individual and

ity speech, whereas previous efforts focused on degradgHE | v the d di h
speech conditions. subsequently use only the data corresponding to the most

effective modality. Using this approach however, does not
leverage the fact that data quality for the two streams can
1. INTRODUCTION vary independently over time, and the more different types
f data collected, the better the chance that good data will

User authentication based on a speaker’s interaction wi collected in at least one form. Another option is to

any system is bas_e_d on th_e |nf0rmat|or1 that the SYSteM COpA e the joint statistics of the data streams. This approach
lects. In general, itis possible and desirable to exploit mul-

tiole f finf i biained by diff tt d ses both forms of the data, but since the joint statistics
Ipie forms of information obtainéd by difierent transauc-, .o used, if one data stream is noisy or otherwise poor, it

ers operating simu!taneously. In.particular, a significanéan adversely affect the overall performance. The most
ber;tgfllt czntbe ?btalned t'a/ analyszg theilcoLrelatlon in thfFexibIe option is to create models independently for each
muttiple data streams. ore signiiicantly, hOWEVer, any,., modality and combine scores and decisions from both.

subset of the data streams form a context for the analy evious studies [4] have focused on score combination at

of any other subset of streams, allowing the formulation (.)tfhe test utterance level in the degraded speech case. We

a}robust .tlme—varymg fusion methodology. In this eXpos'bropose, and provide evidence for the hypothesis that the
tion, audio and video data streams are used.

. . . best approach is to model the two data streams indepen-
The focus is to develop a time varying approach to mult PP P

¢ lvsis where i L the fusi t dat Icilently and make an intelligent, time varying decision as to
stream analysis where in generarthe fusion otdala, SCorGgy,; -y model to use and/or how to combine scores for each
and decisions occur locally in time at the stream element

. . oint in time. The results presented herein are significant
level and relative to a local context that includes a measu

f data rich d dat - In th | that improvement in speaker recognition performance
of data richness and data consistency. 1n th€ Sequel, We.»ined for the high quality, clean speech case (as ev-
will sometimes refer to a combination of these two prop

erties as “reliability.” It is believed that the reliability of idenced by overall audio performance) by adding video

. . . . stream data and performing a time-varying analysis.
each data stream varies with time as the interaction pro- P 9 ying y

ceeds and performance gains can be achieved by using this
knowledge intelligently. 2. FEATURE STREAMS
As we show in this paper, even in the clean speech case,
there exists a subset of the population for which audio bas&@multaneous recordings of audio and video data are used
authentication is problematic and inconsistent. We provid® produce the three vector streams of interst= {x¢}

0-7803-7663-3/03/$17.00 ©2003 IEEE V-712 ICASSP 2003




(audio),X? = {x}} (video), andX*’ = {x¢"} (vector-wise where the index runs through the mixture components in
concatenation of audio and video streams), consisting ftihe model}/7 andp(-) is a multi-variate Gaussian density.
the audio of mean normalized, 23 dimensional, Mel freThe multi-stream input to the identification systenkis
quency cepstral coefficient (MFCC) vectors (no CO) com{X“, X"}, a set of two streams witly vectors in each.
puted using 24 filters. Visual features are extracted us-

ing an appearance based technique [5]. For each vidgo1 Generalized Discriminant

frame, a statistical face tracking algorithm is used to de-

fine a region of interest to which a 2-D, separable, discreide define the general discriminant with time varying pa-
cosine transform (DCT) is applied. The 24 highest energigmeters for anV frame input as{ € {1,...,N} and
(over all training data) DCT coefficients are retained and € {a,v})

mean normalization is applied to compensate for lighting .
variations. No delta parameters are used. The audio and’(X1J) = SOSTRG) + W) meds (x1MT),  (2)
video vector coefficients are further processed via short- b

time Gaussianization [7] which attempts to mitigate the efer

fects on the mean and variance parameters of linear chan- ,

nel and additive noise distortions by locally mapping the D(X[i) = D> > ®;()¥; (j)nsds (X1 M7). 3)
features to the standard normal distribution. t s

where®?(j) and ¥$(j) are time, stream, and model de-
3. SPEAKER MODELS pendent parameters that measure the local congruence of
' the test data with the model and the stability of the score

Speaker modeling is based on the Gaussian Mixture Mod fream, aqd;s normalizes the scale of the SCores. Npte
that there is a product and sum form of the combination.

[6] (GMM) framework and the transformation based en- . L
he important point is tha® measures the match of the

hancements described in [1] which use feature space o d h dels arid h dictabil
timizations on top of the initial feature sets. These opti-eSt ata to the models andmeasures the predictability

mizations, via the Maximum Likelihood Linear Transfor-Of the score stream. They are the normalized parameters,
mation (MLLT) [3], are conditioned on the models which®® defined in section 4.1.3, derived frgi(;) andy (j).

must therefore be built before the optimization. For each .

data streams, and speakeyj, the Ni-component model, ~ 4.1.1. Coverage;(j)

M}, is parameterized, prior to the feature space optimiza\-0 determiney; (), which is a measure of the coverage of
tion, by {m}, %77, pl ;};, _ . i, COnsisting of the es-

5,00 s the model by the test data, we invert the roles of the test

timates of the mean, covariance, and mixture weight P& training data and compute what we call an “inverse”

rameters. Restriction to diagonal covariance models Ofikelihood. That is. for a time. we model a neighborhood
curs in a transformed feature space where an MLLT traryfl—n time) of the test vector by a GI\/IMVItftSt, and measure

. J . . . . A S'
:;):Zn;a;[;]oen ;I-OSS slsir?qisesljir;ll)xﬁ tﬁﬁri‘iiﬂg i?j;e?ﬁ’et?eg?é_the likelihood of the model parameter§!, and/or training
data (forM?), w.r.t. the test data model in computing the

tion [3]. Consequently, the new model parameterization . . L

. A B h parameter. In its generalized form, the equation is:

is MJ = TIMi° = {msﬂ-,Zw,p;’i}i:17"'71\,5, where

my ;= Timy? andXy; = d_iag(nggz_‘;TgT). Note that $5(j) = > ol i (m? | TIrlest) (4)
the feature space optimization is carried out independently i

for each speaker model and each feature stream. As a N .

result, each speaker model has its own associated featifgereT;M 5" denotes transformation of the test model

space. in to M's feature space artﬁ?syi is a constant proportional

top! ; and|X? ;|, the determinant of the diagonal matrix in
the optimal model feature space. In the sumanges over
all the components af/J. Figure 1 shows the behavior of
this parameter, where “normalized” indicates the normal-
We use a modified likelihood based discriminant functiorllZatlon in section 4.1.3. _The major trend over the models
. . . can be seen to be relatively consistent for the two utter-
that takes into account the added transformation. Given s . : )
N : ances, which indicates the relative richness of the train-
a set of vectorX® = {x{} in R" from some strears, . :
o . L ing data for the 25 models used. However, there are a fair
the base discriminant function for any individual stream . SN
dependent target modal? is nur_nber of mc_>de|§ where the values dlverg_e, indicating the
s variable relative richness of the test data (in the two utter-
ances). The power of this measure lies in the fact ¢hiat

ds (x| M) = max [IOgP(Tixﬂmi,ia Ei,iapi,i)] » (1) not symmetric with respect to the roles of the training and

4. DISCRIMINANTS WITH TIME-VARYING
CONTEXT-DEPENDENT PARAMETERS

V-713




Video
Model
relative (y)
v stability
N ‘ - .
v RN audio stream A reltive (o)
N coverage
Audio
" model index = = Model

Figure 1: Normalized coveragef) for 25 models over 2 Figure 3: Decision parameters and data flow.
different utterances from one speaker.
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4.1.3. Normalization®;(j), ¥7(j), andn,

® and¥ are normalized parameters basedsendy:

deviation
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Figure 2: Video stream deviation] (5)) for a 1000 frame

X This induces a context dependence since the weights on
section.

one stream depend on the other. The reciprocal is used in
computing? because we want the factor to be inversely
proportional to the deviation. Thg, parameter, incor-
test data. A high concentration of test data near one modgbrating the normalization for the scale differences in the
component can yield a high likelihood, yet when the rolegcore streams, is set (based on empirical performance) to
are reversed, and the model is built on the test data, th‘?us,gzobaz, which is the reciprocal of the mean value of the

training data means and/or vectors could have a very lodtream elements to be combined, taken over a large sample
likelihood, indicating that the training data is much richerpf data.

in comparison to the test data. One can associatéth

the fraction of the model covered by the test data.
4.2. ldentification Decision

Speaker identification is carried out by computing equation
2 or 3 for each speakgr and letting the decision be given

4.1.2. Deviationuy{(j) by

The parametet); (j) is computed using the deviation of id=arg m?XD(XU)'
the score at timéfrom a point estimate of the score at time
t, based on a neighborhood (in time) of test vecXfs,, ,

(the size of this neighborhood is in general independent of
that used for determining). It is a measure of the relative
instability of the data stream at tinte

5. EXPERIMENTS

Our experiments are based on an audio-visual database con-
. . sisting of 304 speakers. The speech and audio were cap-
5G) = ! ds (G [M]) — plds (X°| M]); X € Xiuna]l  tured as the users read prompted text while in front of a
t\ sit olds(xs|MI);xs € XEy,4] computer that was equipped with a microphone and cam-
_ (5) era. Foreach speaker, approximatlg seconds of speech
Notice thatﬂg,t should ensure thap; (j) is positive. The was used for training and on average the test utterances
deviation shown in figure 2 typically hovers closely to awere 6.7 seconds long with a standard deviation2o7f.
constant value, there are a number of sections where tBeperiments were conducted at both the utterance level
deviation becomes quite large. Tiieparameter is related and frame level. For the frame level experiments, a 100
to the ¢ factor in that an unstable score stream can be thepeaker subset of the data was chosen to reduce computa-
result of the differing richness of the train and test dataion and storage costs. The total number of tests for the
However, as one does not necessarily imply the other, it fall (All) and reduced (100spkr) sets are 19714 and 7307
advantageous to use both parameters. respectively.
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Config Data Set
All [ 100Spkr
Audio, X* 98.2%| 98.0%
Video, X" 75.4%| 89.1%
Audio+Video,X*" | 69.1% | 90.7%

Table 1: Identification rates on A/V multi-stream data.

Config
U(@=0)| (T =0)| &2
100spkr 99.3% 99.1% | 99.6%
audio only v&d
changed spkrsg 95.5% 99.5%

tests account for 3131 trials. The improvement for these
speakers (over the audio only case) is given in table 2.

6. CONCLUSION

Here we have presented a new method to combine informa-
tion present in two, or more, streams of data. We propose
that the quality of data and the richness of the testing data
relative to the training data vary over time and in fact within
the boundaries of an utterance. A notion of data reliabil-
ity was developed incorporating the stability, or point con-
sistency, of a score stream and the coverage of the model
by the test data. Experiments showed that this decision
method out-performed the use of audio alone, video alone,
or a concatenation of the streams. The results are promis-
ing because they are obtained for the clean speech case, for

Table 2: Performance with frame-level time and contexf/hich it was previously questioned whether adding video

dependent weights.

5.1. Baseline

data could improve performance.
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