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ABSTRACT

We examine a time-varying, context dependent informa-
tion fusion methodology for multi-stream authentication
based on audio and video data collected simultaneously
during a user’s interaction with a system. Scores obtained
from the two data streams are combined based on the rela-
tive local richness, as compared to the training data or de-
rived model, and stability of each stream. The results show
that the proposed technique outperforms the use of video
or audio data alone as well as the use of fused data streams
(via concatenation). Of particular note, is that the perfor-
mance improvements are achieved for clean, high qual-
ity speech, whereas previous efforts focused on degraded
speech conditions.

1. INTRODUCTION

User authentication based on a speaker’s interaction with
any system is based on the information that the system col-
lects. In general, it is possible and desirable to exploit mul-
tiple forms of information obtained by different transduc-
ers operating simultaneously. In particular, a significant
benefit can be obtained by analyzing the correlation in the
multiple data streams. More significantly, however, any
subset of the data streams form a context for the analysis
of any other subset of streams, allowing the formulation of
a robust time-varying fusion methodology. In this exposi-
tion, audio and video data streams are used.

The focus is to develop a time varying approach to multi-
stream analysis where in general the fusion of data, scores,
and decisions occur locally in time at the stream element
level and relative to a local context that includes a measure
of data richness and data consistency. In the sequel, we
will sometimes refer to a combination of these two prop-
erties as “reliability.” It is believed that the reliability of
each data stream varies with time as the interaction pro-
ceeds and performance gains can be achieved by using this
knowledge intelligently.

As we show in this paper, even in the clean speech case,
there exists a subset of the population for which audio based
authentication is problematic and inconsistent. We provide

and study methods for predicting the reliability of the data
streams. It may turn out for any point in time that only
audio, only video, or a combination of the two streams are
used. And this combining process is time varying in that
the reliability is modeled locally as a function of time and
other signal properties.

That multi-stream analysis would be beneficial is no
surprise given Doddington’s study [2] where it is shown
that there are speakers, termed “goats,” who are difficult
to recognize based on their voice. Speakers who are read-
ily recognized based on voice are termed “sheep.” In light
of this, one may choose to make an a priori decision as to
the efficacy of audio vs. video data for each individual and
subsequently use only the data corresponding to the most
effective modality. Using this approach however, does not
leverage the fact that data quality for the two streams can
vary independently over time, and the more different types
of data collected, the better the chance that good data will
be collected in at least one form. Another option is to
model the joint statistics of the data streams. This approach
uses both forms of the data, but since the joint statistics
are used, if one data stream is noisy or otherwise poor, it
can adversely affect the overall performance. The most
flexible option is to create models independently for each
data modality and combine scores and decisions from both.
Previous studies [4] have focused on score combination at
the test utterance level in the degraded speech case. We
propose, and provide evidence for the hypothesis that the
best approach is to model the two data streams indepen-
dently and make an intelligent, time varying decision as to
which model to use and/or how to combine scores for each
point in time. The results presented herein are significant
in that improvement in speaker recognition performance
is obtained for the high quality, clean speech case (as ev-
idenced by overall audio performance) by adding video
stream data and performing a time-varying analysis.

2. FEATURE STREAMS

Simultaneous recordings of audio and video data are used
to produce the three vector streams of interest:Xa = fxat g
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(audio),Xv = fxvt g (video), andXav = fxavt g (vector-wise
concatenation of audio and video streams), consisting for
the audio of mean normalized, 23 dimensional, Mel fre-
quency cepstral coefficient (MFCC) vectors (no C0) com-
puted using 24 filters. Visual features are extracted us-
ing an appearance based technique [5]. For each video
frame, a statistical face tracking algorithm is used to de-
fine a region of interest to which a 2-D, separable, discrete
cosine transform (DCT) is applied. The 24 highest energy
(over all training data) DCT coefficients are retained and
mean normalization is applied to compensate for lighting
variations. No delta parameters are used. The audio and
video vector coefficients are further processed via short-
time Gaussianization [7] which attempts to mitigate the ef-
fects on the mean and variance parameters of linear chan-
nel and additive noise distortions by locally mapping the
features to the standard normal distribution.

3. SPEAKER MODELS

Speaker modeling is based on the Gaussian Mixture Model
[6] (GMM) framework and the transformation based en-
hancements described in [1] which use feature space op-
timizations on top of the initial feature sets. These opti-
mizations, via the Maximum Likelihood Linear Transfor-
mation (MLLT) [3], are conditioned on the models which
must therefore be built before the optimization. For each
data streams, and speakerj, theN j

s -component model,
M j;o

s , is parameterized, prior to the feature space optimiza-
tion, by fmj;o

s;i ;�
j;o
s;i ; p

j
s;igi = 1;:::;N

j
s
, consisting of the es-

timates of the mean, covariance, and mixture weight pa-
rameters. Restriction to diagonal covariance models oc-
curs in a transformed feature space where an MLLT trans-
formationTj

s is chosen, via a gradient descent, to mini-
mize the loss in likelihood that results from the restric-
tion [3]. Consequently, the new model parameterization
is M j

s = Tj
sM

j;o
s � fmj

s;i;�
j
s;i; p

j
s;igi = 1;:::;N

j
s
, where

mj
s;i = Tj

sm
j;o
s;i and�j

s;i = diag(Tj
s�

j;o
s;iT

j;>
s ). Note that

the feature space optimization is carried out independently
for each speaker model and each feature stream. As a
result, each speaker model has its own associated feature
space.

4. DISCRIMINANTS WITH TIME-VARYING
CONTEXT-DEPENDENT PARAMETERS

We use a modified likelihood based discriminant function
that takes into account the added transformation. Given
a set of vectorsXs = fxstg in Rn from some streams,
the base discriminant function for any individual stream
dependent target modelM j

s is

ds(xst jM
j
s ) = max

i

h
log p(Tj

sx
s
t jm

j
s;i;�

j
s;i; p

j
s;i)
i
; (1)

where the indexi runs through the mixture components in
the modelM j

s andp(�) is a multi-variate Gaussian density.
The multi-stream input to the identification system isX =
fXa;Xvg, a set of two streams withN vectors in each.

4.1. Generalized Discriminant

We define the general discriminant with time varying pa-
rameters for anN frame input as (t 2 f1; :::; Ng and
s 2 fa; vg)

D(Xjj) =
X
t

X
s

[�s
t (j) + 	s

t (j)] �sds(x
s
t jM

j
s ); (2)

or

D(Xjj) =
X
t

X
s

�s
t (j)	

s
t (j)�sds(x

s
t jM

j
s ): (3)

where�s
t (j) and	s

t (j) are time, stream, and model de-
pendent parameters that measure the local congruence of
the test data with the model and the stability of the score
stream, and�s normalizes the scale of the scores. Note
that there is a product and sum form of the combination.
The important point is that� measures the match of the
test data to the models and	 measures the predictability
of the score stream. They are the normalized parameters,
as defined in section 4.1.3, derived from�st (j) and s

t (j).

4.1.1. Coverage:�st (j)

To determine�st (j), which is a measure of the coverage of
the model by the test data, we invert the roles of the test
and training data and compute what we call an “inverse”
likelihood. That is, for a timet, we model a neighborhood
(in time) of the test vector by a GMM,M test

s;t , and measure
the likelihood of the model parametersM j

s , and/or training
data (forM j

s ), w.r.t. the test data model in computing the
parameter. In its generalized form, the equation is:

�st (j) =
X
i

�j
s;ids(m

j
s;ijT

j
sM

test
s ) (4)

whereTj
sM

test
s;t denotes transformation of the test model

in toM j
s ’s feature space and�j

s;i is a constant proportional

to pjs;i andj�j
s;ij, the determinant of the diagonal matrix in

the optimal model feature space. In the sum,i ranges over
all the components ofM j

s . Figure 1 shows the behavior of
this parameter, where “normalized” indicates the normal-
ization in section 4.1.3. The major trend over the models
can be seen to be relatively consistent for the two utter-
ances, which indicates the relative richness of the train-
ing data for the 25 models used. However, there are a fair
number of models where the values diverge, indicating the
variable relative richness of the test data (in the two utter-
ances). The power of this measure lies in the fact that� is
not symmetric with respect to the roles of the training and
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Figure 1: Normalized coverage (�a
t ) for 25 models over 2

different utterances from one speaker.
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Figure 2: Video stream deviation ( v
t (j)) for a 1000 frame

section.

test data. A high concentration of test data near one model
component can yield a high likelihood, yet when the roles
are reversed, and the model is built on the test data, the
training data means and/or vectors could have a very low
likelihood, indicating that the training data is much richer
in comparison to the test data. One can associate� with
the fraction of the model covered by the test data.

4.1.2. Deviation: s
t (j)

The parameter s
t (j) is computed using the deviation of

the score at timet from a point estimate of the score at time
t, based on a neighborhood (in time) of test vectorsXs

nbhd

(the size of this neighborhood is in general independent of
that used for determining�). It is a measure of the relative
instability of the data stream at timet.

 s
t (j) = �js;t

ds(xst jM
j
s )� �[ds(xsjM j

s ); x
s 2 Xs

nbhd]

�[ds(xsjM
j
s ); xs 2 Xs

nbhd]
(5)

Notice that�js;t should ensure that s
t (j) is positive. The

deviation shown in figure 2 typically hovers closely to a
constant value, there are a number of sections where the
deviation becomes quite large. The parameter is related
to the� factor in that an unstable score stream can be the
result of the differing richness of the train and test data.
However, as one does not necessarily imply the other, it is
advantageous to use both parameters.
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Figure 3: Decision parameters and data flow.

4.1.3. Normalization:�s
t (j), 	

s
t (j), and�s

� and	 are normalized parameters based on� and :

�s
t (j) = �st (j)=

X
q2fa;vg

�qt (j);

	s
t (j) = (1= s

t (j))=
X

q2fa;vg

(1= q
t (j)):

This induces a context dependence since the weights on
one stream depend on the other. The reciprocal is used in
computing	 because we want the factor to be inversely
proportional to the deviation. The�s parameter, incor-
porating the normalization for the scale differences in the
score streams, is set (based on empirical performance) to
1=�s;global, which is the reciprocal of the mean value of the
stream elements to be combined, taken over a large sample
of data.

4.2. Identification Decision

Speaker identification is carried out by computing equation
2 or 3 for each speakerj, and letting the decision be given
by

id = argmax
j
D(Xjj):

5. EXPERIMENTS

Our experiments are based on an audio-visual database con-
sisting of 304 speakers. The speech and audio were cap-
tured as the users read prompted text while in front of a
computer that was equipped with a microphone and cam-
era. For each speaker, approximately120 seconds of speech
was used for training and on average the test utterances
were 6:7 seconds long with a standard deviation of2:7.
Experiments were conducted at both the utterance level
and frame level. For the frame level experiments, a 100
speaker subset of the data was chosen to reduce computa-
tion and storage costs. The total number of tests for the
full (All) and reduced (100spkr) sets are 19714 and 7307
respectively.
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Config Data Set
All 100Spkr

Audio, Xa 98.2% 98.0%
Video,Xv 75.4% 89.1%

Audio+Video,Xav 69.1% 90.7%

Table 1: Identification rates on A/V multi-stream data.

Config
	 (� = 0) � (	 = 0) 	&�

100spkr 99.3% 99.1% 99.6%

audio only 	&�
changed spkrs 95.5% 99.5%

Table 2: Performance with frame-level time and context
dependent weights.

5.1. Baseline

Results are given in table 1 for the cases where the three
streamsXa, Xv, andXav are used in isolation (there is no
score combination or weighting). Recall thatXav is the
vector-wise concatenation ofXa andXv . The discriminant
in these cases isD(Xjj) =

P
t ds(x

s
t jM

j
s ), wheres is ei-

thera, v, or av. As can be seen from the results in table
1, vector-wise concatenation can be detrimental. It is ev-
ident that the speakers for whom good video data existed
and still preserved the base audio error rate were chosen for
the reduced 100spkr set. Also, for the sake of comparison,
we give results for the case where the streams are weighted
with a constant factor for all time, i.e.

D(Xjj) =
X
t

[!ada(xat jM
j
a) + (1� !a)dv(xvt jM

j
v )]:

The identification performance on the 100spkr set is com-
puted on a grid of weights with!a ranging from0:0 to 1:0.
The boundary error rates are the same as in table table 1.
We observe that there is a monotonic increase in accuracy
until the fraction of audio goes beyond 0.9, where the per-
formance peaks at 98.9, showing some benefit of adding
video to the audio system.

5.2. Time Varying Discriminants

Here we focus on the reduced 100spkr population and the
frame-level combination experiments. In table 2 the ef-
fects of using the time and context dependent weights (�
and	) in isolation and together, using the sum form ( 2),
are shown. Using either parameter in isolation is benefi-
cial, but using both together clearly outperforms all cases.
If we consider the speakers for whom at least one decision
(for one test utterance) changed, we get 27 speakers whose

tests account for 3131 trials. The improvement for these
speakers (over the audio only case) is given in table 2.

6. CONCLUSION

Here we have presented a new method to combine informa-
tion present in two, or more, streams of data. We propose
that the quality of data and the richness of the testing data
relative to the training data vary over time and in fact within
the boundaries of an utterance. A notion of data reliabil-
ity was developed incorporating the stability, or point con-
sistency, of a score stream and the coverage of the model
by the test data. Experiments showed that this decision
method out-performed the use of audio alone, video alone,
or a concatenation of the streams. The results are promis-
ing because they are obtained for the clean speech case, for
which it was previously questioned whether adding video
data could improve performance.
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