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ABSTRACT

In this paper we present optimal quantization watermarking strate-
gies with respect to the robustness of a watermarking system give
the embedding rate and distortion constraint. Firstly, we investi-
gate the optimal decoding for quantization watermarking and show
that by making use of channel statistics, the maximum likelihood

decoder is always better than the minimum distance decoder. Sec

ondly, the optimal encoding is designed by exploiting the knowl-
edge of the host signal and channel statistics. Algorithms for de-
signing the optimal uniform quantization encoding scheme and

optimal nonuniform quantization encoding scheme are proposed.

Simulation results show that the optimal nonuniform quantization
watermarking can achieve better performance. Finally, applica-
tions to image authentication which is robust to high quality JPEG
compression are described.

I. INTRODUCTION

n

the embedded watermark and forms an estiméteThe decoding
error probability is defined aB. = P.{M # M} which can be
used to characterize the robustness of a watermarking system. The
secret keyK ™ is used to provide a source of randomness that is
known to the decoder. In this paper we are primarily interested
in the case where the host sigrfll = (51,52 --- , Sy) is a se-
guence of i.i.d. random variables with distributipg(s) and the
attack channel is a memoryless channel.

Usually the original host signal is not available at the decoder.
Indeed, many watermarking algorithms proposed so far have a
general property that the host signal is treated as a source of the
interference to the watermark message. Chen and Wornell[2] pro-
posed a quantization watermarking (QW) method which can reject
the host signal interference. In particular, they proposed a dither
modulation approach as a low complexity QW method where the
embedding can be described as

& = q(s + d(m)) — d(m) £ ¢™(s) (1.2)

In the recent years digital watermarking has been widely acceptedWhered(m) represents a dither vector ané) is a quantization

as a valid approach for copyright protection and content authenti-
cation. It has been viewed as communication with side informa-
tion [1] and can be generally described by Figure 1. In this Figure,
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Fig. 1. General watermarking model

there is a host signal vectsr" into which we wish to embed a uni-
formly distributed watermark messagé. The embedding rate is
expressed aR = % log | M|, where| M| is the cardinality of the
message set!. The encoder is a function that ma§g and/ to

a composite signak v subject to a distortion constraif};. The
attacker, who is unable to access the side informafiéh pro-
duces a corrupted output sigrigl” in an attempt to remove the
watermark with a distortion constraifi?.. The decoder extracts
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operator. The watermark information is conveyed in the choice of

guantizer. For an uncoded binary dither modulation with uniform

scalar quantization, the output levels of quantizers can be specified
b= 2+kA, ifm=0

as
“”_{ b= -2 4 kA, ifm=1
where Kk is an integer.

One can extend the above dither modulation approach to gen-
eral quantizerg™(s), m € {0,1}, where eacly™ is a mapping
from the real line R to a codebodR™ = {b7", b3, b5 - - - b7 }.
Hence all codebookB™ (s), m € {0, 1}, are assumed to be dis-
joint. The output valuespy*,j = 1,2,--- L, are referred to as
reconstruction points or output level&. is the number of output
levels or the size of codebook; it could be finite or infinite. Asso-
ciated with the quantizey™ is a partition of the real ling? into L
quantization cell€;". Thejth quantization cell

{ C’J'-; {s€R:q™(s) =0"} = (2]%1, 2]
Uj:l ij
is an interval which hals]" as the reconstruction point agd™ ; , z;")
as the input range, wherg* = 1 (b7* + b7, if 1 < j < L —1,
2yt = —oo andzy’ = 4oo.

The squared error distortion corresponding to the quanjizer
isD™ =" [ (s = b7")*p(s)ds wherep(s) is the proba-

e

bility density function of the host signal. The average embedded

)
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distortion is expressed as From the graphs, we can see that the ML decoder is always
better than the MD decoder. For instance, wiki$, X ) = 0.21333
D=D(S,X)= 1 Z D™ (1.2) and P. = 0.375, the SNR difference4 SN R) between the MD
2 and ML decoder iNSNR = SNRyp — SNRy = 0.5 dB.
The ML decoder achieves a 0.5 dB SNR gain. We also notice from
At the receiver, a minimum distance (MD) decoder, which chooses Figure 3 that in the small distortion scenario, I¥,S, X) << o2,

me{0,1}

the reconstruction point closest to the channel output signis the performance of the MD decoder approaches that of the ML de-
applied to extract the watermark, i.e., coder, which suggests that in the small distortion scenario we can
use the MD decoder instead of the ML decoder as the MD decoder

M(y) = argmin ||y — ¢" (y)|| (1.3) has low implementation complexity.

The above watermarking scheme is very simple. However, it
doesn't consider the statistics of the host signal and attack channel
to improve the robustness of the watermarking system, and hence
it's not optimal. In this paper we consider the optimization prob-
lem with respect to the robustness of QW given the embedding rate
and distortion constraint. In Section 2, we will explore the optimal
decoding strategy to maximize the robustness. Optimal encoding
strategies are proposed in Section 3. Applications to image au-
thentication are presented in Section 4.

lll. OPTIMAL ENCODING FOR QUANTIZATION
WATERMARKING

In [2], QW has been viewed as a combination of source coding
(quantizers) and channel coding (signal constellations). In this sec-
tion we will examine how source coding and channel coding the-
ory can be utilized in watermark encoding to minimize the trans-
mission error probability. In source coding, a quantizer can be op-
timized if we know the statistics of the host signal. LLoyd[3] and
MAX[4] have proposed a method called Lloyd-Max algorithm to
Il. OPTIMAL DECODING FOR QUANTIZATION get an optimum quantizer which can minimize the distortion if the
WATERMARKING number of quantization levels L is fixed. Based on the LLoyd-Max
) ) o algorithm, we will develop encoding schemes which can increase
Watermarking has been viewed as a form of communication. From the robustness of the watermarking system while keeping the dis-
communication theory we know that maximum a posteriori (MAP)  tortion within a prescribed limit. We begin with the design of op-
detection forms the optimal decision rule when the costs for all timal uniform QW schemes. As the usual embedded distortion

possible errors are equal. When all codewords are sent with equajs small, we employ the MD decoder below in our watermarking
probability, MAP detection is equal to maximum likelihood (ML) design.

detection. For a QW system, the ML rule can be expressed as

m(y) = arg mj}x{P(?Jlm)} (2.4) IlI-A. Optimal Uniform Quantization Encoding

) - S For a fixed L level uniform binary scalar quantizers, the output
whereP(y|m) is the conditional probability distribution af un- levelsb} andb}, are distributed symmetrically around the origin,
der the condition that is sent and can be expressed as which can be specified as

L
=% +k-1-15)A
P(ylm) = P(s e CTMA(y|b" 2.5 k=4 2

(ylm) J; ( 7 A(y[b]") (2.5) {%Z-%—(L—k—\_%J)A
In (2.5), P(s € C7") is the probability that the signallies in the wherek = 1,2, , L.
quantization cellC’;", and A(y|x) is the transitional probability The decoding error probability of the corresponding water-
distribution of the attack channel. marking System can be expressed as

The performance of the decoder can be characterized by the
average error probability

L
1 m m
. P.=; mgl};})(s € CP}. 3.7)
Pe=1-47 ZM/ p(y|M = m)dy (2.6) ’

me where P}, is the decoding error probability when the signab
where),,, denotes the region for which we decide that the messagein the quantization cell’;”. In the case of an additive white Gaus-
m was sent. sian noise (AWGN) channel with a noise variances@f it can be

In general it's difficult to get a simple closed—form formulato shown that the error probability of the MD decoder is expressed as

compute the error probability?. given in (2.6). Figures 2 and 3 _
give the experimental results of the ML decoder vs MD decoder ( P?, = Q(| (AL 04 )

4oy,
for the uncoded binary dither modulation with uniform quantiza- + Zf:ll 1 Q| (4(i+147j>73)A N —Q <4(i+147j)71)A| )|
tion when the host signaf ~ N (0, 1), the embedded signal is pl :_Q(l (4(j—1)+1)AUT) on (3.8)
a binary random sequence, the attack is an additive white Gaus- M 454’(%7j)73)A (4G—f)—-1)A
sian channel with zero mean and variancerpfand the two lev- +2i | QOT‘ ) — Q(‘T| )|

els of distortion are 0.21333 and 0.003338, which correspond to ) ) . )
a large and small distortion respectively. In the graphs SNR de- When L is even. In (3.8)Q(-) is the Gaussian Q-function and

oo 42 — .
notes the ratio of the encoded distortion to the variance of noise, Q(z) = —&= [~ e /2dt. A similar formula can be obtained
ie, SNR = 10log,, pixys = 10logy, 25X, when L is odd.

V -673




~0~ Maximum Likelihood
-5~ Minimum Distance

Error Probability
o
3

i i ~oo
2 4 6 8 10 12 14 16
SNR(dB)

Fig. 2. Decoding error prob. for dither modulation when

D(S, X) = 0.21333
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Fig. 3. Decoding error prob. for dither modulation when

D(S, X) = 0.003338

The increase of quantization step sikavill decrease the error

Fig. 4. Binary quantization watermarking with an even L

The root of the equatioé% =0, i.e, Amin, could be obtained
by using the bisection method or Newton method. To find the
optimal quantization step siz&p is equal to determining one of
the roots of the equatioP — Dy = 0, which is greater tha in .

By applying the same bisection method as in determinaiag.,,
Agpt can be located easily.

It can be verified thagZ is an increasing function of the vari-
able A and has only one root for the equatiéﬁ = 0 when the
host signal is Gaussian or Laplacian for a fixed codebook size L.

Denote the optimal quantization step size for a fixed codebook
size L asAgpt. When L is a variable we have the following theo-
rem.

Theorem 1 When the number of quantization levels is not fixed
for a binary uniform quantization watermarking scheme, the opti-
mal quantization step size iSqp; = limz oo Agpt.

By relaxing the constraint that the quantizers in the watermark-
ing scheme be uniform, we can get a more robust watermarking
encoding scheme by utilizing the statistics of the host signal.

I1I-B. Optimal Nonuniform Quantization Encoding

Optimal nonuniform quantization in source coding includes the
nearest neighbor rule and centroid rue with respect to the squared
error distortion measure. Applying the above two rules can de-
crease the distortion, but it doesn’t guarantee the decrease of the
decoding error probability’.. Thus a compromise is needed. The
detailed algorithm is stated as follows:

probability Pj. and F.. This can be showed by the following  step 1 First use the algorithm in subsection I1I-A to get an optimal

lemma.

Lemma 1 Whent > v4In3anda > 3, functionf(t) = Q((a+
D)t) — Q((a — 1)t) is a decreasing function of the variable

Therefore the optimization problem for the uniform QW is to find
the largest allowable quantization step sixg: with the distortion
constraintD;. One method to find\op is to set the distortion func-
tion (1.2) to the distortion constraid®; and then find the largest
root of the equatiorD = D;. In general it's difficult to determine
the roots mathematically. In the following, we will use a numerical
method to findAgpt.

Assume the equatioé% = 0 has only one roof\,i». Then
we can show tha{% > 0if A > Anin. The average distortion
D is minimized withDyin at the pointAi,. WhenA > Ay,
the distortionD is a increasing function oA. To determineA oy
with a distortion constrainD; which is greater tham,,;,, we can
first determine the quantization step siXg.in and then scale the
quantization step size with one coefficienta > 1) such that
D = D,. The optimal quantization step sizeAsy = aAmin.

binary uniform quantization codebook set. Denote this ini-
tial quantization codebook set & = {B°", B*"},
and compute the average distortion/ag:) using the for-
mula (1.2). Set = 1 andi = 1. Compute the decoding
error probabilityPE(l) for this initial codebook set and set
s = 1. At high signal to noise ratios’. can be approxi-

mated as

1 L dm m

Z m Sk 7.8
Porg 30 DOP€CTQGE) + Q2]

me{0,1} j=1

(3.9)

where

&) p = |05 = bj_l, j=2,---,L

dip=d;p=bj=bj], j=1-,L-1

dl’B:|bj+1—b;'|7 j=1---,L-1

1

dl,F =dp p=

are illustrated in Figure 4 when L is even.
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Step 2 Given the codebook sé&(®, find the centroid of the quan-
tization cell C? and denote it a$) = E[S|S € CY].
Construct a temporary codebook g&t = {B('), B;} such
that By = {69,063, b2 ---b2}, By = By andz?’
10" +6%,,"). Compute the decoding error probabiliey
for B . If P; < P, letB = B/, P. = Pé; otherwise leave
the old codebook set intact. Update the quantization cell
C} and the codebook set likewise to a new codebook set.

Step 3 Repeat the above operation uritid= L, and we get a code-
book setB**1). Compute the corresponding distortion
Dgity. If Dgwy — Dgeyry < e for some t, where
€1 is a prescribed threshold, then go to Step 4; otherwise
increase thy 1, seti=1 and go to Step 2.

Step 4 Scale the codebooks in the codebook set with a coefficient
a(a > 1) using the bisection method such that we get a
new codebook set with the distortidn = D,. As the dis-

tance between signal constellations increases, the decoding

error probability will decrease. Compute the decoding er-
ror probability for this new codebook set and denote it as

PEYY f p) — pltY < ¢, for somes, wherees is

a prescribed threshold, stop; otherwise increase s by 1, set

t = 1 andi = 1, denote the newly obtained codebook set
by B™ and go to Step 2.

It's easy to see that the algorithm will necessarily produce a se-

guence of codebook sets with monotone nonincreasing values of

the decoding error probability. Hence the algorithm will converge
to a final codebook set. Figure 5 is a comparison of the perfor-
mance of the optimal nonuniform QW vs the optimal uniform QW
whenS ~ N (0,1), the codebook size is 12 and the distortion
D(S, X) = 0.019089. From the graphs, we can see the optimal
nonuniform QW can achieve better performance. The difference
of SNR between the two methods(25 dB at P. = 107°. At
P. =101, the difference increases to approximatelys dB.

The above optimal QW scheme can be directly applied to im-

age authentication when the watermark is required to be robust to
high quality JPEG compression as JPEG compression can be modyaple 1. Decoding error prob.

elled as one kind of Gaussian noise.

IV. APPLICATION IN IMAGE AUTHENTICATION

In this section we compare the robustness of our image authentica-

tion watermarking scheme incorporating the optimal nonuniform

quantization with the watermarking method developed by Kundur
and Hatzinakos[5] to high quality JPEG compression. Our water-
marking technique is developed in the S—transform domain, one
type of integer wavelet transforms, which can avoid the noise is-

sue caused by round operations of the pixel value when saving the 2]

watermarked image using the transform domain watermarking[5].

Consider embedding a random sequence, one bit per coeffi-

cient, at each resolution level of the wavelet decomposition of
256 x 256 Lena image respectively with a mean square error (mse)
constraint ofs such thatP SN R =~ 40 dB, which is a tolerated per-
turbation level for an image. We employ the optimal nonuniform

QW in each subband and a Laplacian pdf is used to model the dis-

tribution of the wavelet coefficients in each subband. In Kundur
and Hatzinakos's scheme the quantization step size is ge2'to
such thatnse ~ 6 wherel,, is the resolution level.

We tested the decoding error probabilities with Kundur and

when the quality of JPEG compression ranges from 70 to 97. Ta-
ble 1 illustrates the experimental result when the quality of JPEG
compression is 92. We can see that the optimal nonuniform QW
achieves better performance, which is useful for lossy communi-
cations. Similar performance gains were also obtained for other
quality values.

V. CONCLUSIONS

In this paper we study how to improve the robustness of the quan-
tization watermarking. The optimal decoding and encoding strate-
gies are presented. Our technique can be applied to image authen-
tication where robustness to JPEG compression is required.

—O- Uniform Quantizer
-~ Nonuniform Quantizer

Error Probability

5,

107

8
SNR(dB)

Fig. 5. Decoding error probability for optimal binary quantization
watermarking

Pc lw:1 lw:2 lw:3 lw:4 lw:5
KH | 0.4252 | 0.1414| 0.0436 | 0.0208 | 0.0052
QW | 0.3972 | 0.0699 | 0.0111 | 0.0000 | 0.0000

for KH's scheme and optimal QW
scheme with a JPEG compression quality of 92
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