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ABSTRACT

In this paper we present optimal quantization watermarking strate-
gies with respect to the robustness of a watermarking system given
the embedding rate and distortion constraint. Firstly, we investi-
gate the optimal decoding for quantization watermarking and show
that by making use of channel statistics, the maximum likelihood
decoder is always better than the minimum distance decoder. Sec-
ondly, the optimal encoding is designed by exploiting the knowl-
edge of the host signal and channel statistics. Algorithms for de-
signing the optimal uniform quantization encoding scheme and
optimal nonuniform quantization encoding scheme are proposed.
Simulation results show that the optimal nonuniform quantization
watermarking can achieve better performance. Finally, applica-
tions to image authentication which is robust to high quality JPEG
compression are described.

I. INTRODUCTION

In the recent years digital watermarking has been widely accepted
as a valid approach for copyright protection and content authenti-
cation. It has been viewed as communication with side informa-
tion [1] and can be generally described by Figure 1. In this Figure,
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Fig. 1. General watermarking model

there is a host signal vectorSN into which we wish to embed a uni-
formly distributed watermark messageM . The embedding rate is
expressed asR = 1

N
log |M|, where|M| is the cardinality of the

message setM. The encoder is a function that mapsSN andM to
a composite signalXN subject to a distortion constraintD1. The
attacker, who is unable to access the side informationSN , pro-
duces a corrupted output signalY N in an attempt to remove the
watermark with a distortion constraintD2. The decoder extracts
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the embedded watermark and forms an estimateM̂ . The decoding
error probability is defined asPe = Pr{M̂ 6= M} which can be
used to characterize the robustness of a watermarking system. The
secret keyKN is used to provide a source of randomness that is
known to the decoder. In this paper we are primarily interested
in the case where the host signalSN = (S1, S2 · · · , SN ) is a se-
quence of i.i.d. random variables with distributionpS(s) and the
attack channel is a memoryless channel.

Usually the original host signal is not available at the decoder.
Indeed, many watermarking algorithms proposed so far have a
general property that the host signal is treated as a source of the
interference to the watermark message. Chen and Wornell[2] pro-
posed a quantization watermarking (QW) method which can reject
the host signal interference. In particular, they proposed a dither
modulation approach as a low complexity QW method where the
embedding can be described as

x = q(s + d(m))− d(m)
∆
= qm(s) (1.1)

whered(m) represents a dither vector andq(·) is a quantization
operator. The watermark information is conveyed in the choice of
quantizer. For an uncoded binary dither modulation with uniform
scalar quantization, the output levels of quantizers can be specified
as

x =

�
b0
k = ∆

4
+ k∆, if m = 0

b1
k = −∆

4
+ k∆, if m = 1

where k is an integer.
One can extend the above dither modulation approach to gen-

eral quantizersqm(s), m ∈ {0, 1}, where eachqm is a mapping
from the real line R to a codebookBm = {bm

1 , bm
2 , bm

3 · · · bm
L }.

Hence all codebooksBm(s), m ∈ {0, 1}, are assumed to be dis-
joint. The output values,bm

j , j = 1, 2, · · ·L, are referred to as
reconstruction points or output levels.L is the number of output
levels or the size of codebook; it could be finite or infinite. Asso-
ciated with the quantizerqm is a partition of the real lineR into L
quantization cellsCm

j . Thejth quantization cell�
Cm

j = {s ∈ R : qm(s) = bm
j } = (zm

j−1, z
m
j )SL

j=1 Cm
j = R

is an interval which hasbm
j as the reconstruction point and(zm

j−1, z
m
j )

as the input range, wherezm
j = 1

2
(bm

j + bm
j+1) if 1 ≤ j ≤ L− 1,

zm
0 = −∞ andzm

L = +∞.
The squared error distortion corresponding to the quantizerqm

is Dm =
PL

j=1

R zm
j

zm
j−1

(s − bm
j )2p(s)ds wherep(s) is the proba-

bility density function of the host signal. The average embedded
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distortion is expressed as

D = D(S, X) =
1

2

X
m∈{0,1}

Dm (1.2)

At the receiver, a minimum distance (MD) decoder, which chooses
the reconstruction point closest to the channel output signaly, is
applied to extract the watermark, i.e.,

m̂(y) = arg min
m
||y − qm(y)|| (1.3)

The above watermarking scheme is very simple. However, it
doesn’t consider the statistics of the host signal and attack channel
to improve the robustness of the watermarking system, and hence
it’s not optimal. In this paper we consider the optimization prob-
lem with respect to the robustness of QW given the embedding rate
and distortion constraint. In Section 2, we will explore the optimal
decoding strategy to maximize the robustness. Optimal encoding
strategies are proposed in Section 3. Applications to image au-
thentication are presented in Section 4.

II. OPTIMAL DECODING FOR QUANTIZATION
WATERMARKING

Watermarking has been viewed as a form of communication. From
communication theory we know that maximum a posteriori (MAP)
detection forms the optimal decision rule when the costs for all
possible errors are equal. When all codewords are sent with equal
probability, MAP detection is equal to maximum likelihood (ML)
detection. For a QW system, the ML rule can be expressed as

m̂(y) = arg max
m
{P (y|m)} (2.4)

whereP (y|m) is the conditional probability distribution ofy un-
der the condition thatm is sent and can be expressed as

P (y|m) =

LX
j=1

P (s ∈ Cm
j )A(y|bm

j ) (2.5)

In (2.5),P (s ∈ Cm
j ) is the probability that the signals lies in the

quantization cellCm
j , andA(y|x) is the transitional probability

distribution of the attack channel.
The performance of the decoder can be characterized by the

average error probability

Pe = 1− 1

M

X
m∈M

Z
Ym

p(y|M = m)dy (2.6)

whereYm denotes the region for which we decide that the message
m was sent.

In general it’s difficult to get a simple closed–form formula to
compute the error probabilityPe given in (2.6). Figures 2 and 3
give the experimental results of the ML decoder vs MD decoder
for the uncoded binary dither modulation with uniform quantiza-
tion when the host signalS ∼ N (0, 1), the embedded signal is
a binary random sequence, the attack is an additive white Gaus-
sian channel with zero mean and variance ofσ2

n and the two lev-
els of distortion are 0.21333 and 0.003338, which correspond to
a large and small distortion respectively. In the graphs SNR de-
notes the ratio of the encoded distortion to the variance of noise,
i.e,SNR = 10 log10

D(S,X)
D(X,Y )

= 10 log10
D(S,X)

σ2
n

.

From the graphs, we can see that the ML decoder is always
better than the MD decoder. For instance, whenD(S, X) = 0.21333
andPe = 0.375, the SNR difference (∆SNR) between the MD
and ML decoder is∆SNR = SNRMD − SNRML = 0.5 dB.
The ML decoder achieves a 0.5 dB SNR gain. We also notice from
Figure 3 that in the small distortion scenario, i.e,D(S, X) << σ2

s ,
the performance of the MD decoder approaches that of the ML de-
coder, which suggests that in the small distortion scenario we can
use the MD decoder instead of the ML decoder as the MD decoder
has low implementation complexity.

III. OPTIMAL ENCODING FOR QUANTIZATION
WATERMARKING

In [2], QW has been viewed as a combination of source coding
(quantizers) and channel coding (signal constellations). In this sec-
tion we will examine how source coding and channel coding the-
ory can be utilized in watermark encoding to minimize the trans-
mission error probability. In source coding, a quantizer can be op-
timized if we know the statistics of the host signal. LLoyd[3] and
MAX[4] have proposed a method called Lloyd-Max algorithm to
get an optimum quantizer which can minimize the distortion if the
number of quantization levels L is fixed. Based on the LLoyd-Max
algorithm, we will develop encoding schemes which can increase
the robustness of the watermarking system while keeping the dis-
tortion within a prescribed limit. We begin with the design of op-
timal uniform QW schemes. As the usual embedded distortion
is small, we employ the MD decoder below in our watermarking
design.

III-A. Optimal Uniform Quantization Encoding

For a fixed L level uniform binary scalar quantizers, the output
levelsb0

k andb1
k are distributed symmetrically around the origin,

which can be specified as�
b0
k = ∆

4
+ (k − 1− bL

2
c)∆

b1
k = −∆

4
− (L− k − bL

2
c)∆

wherek = 1, 2, · · · , L.
The decoding error probability of the corresponding water-

marking system can be expressed as

Pe =
1

2

X
m∈{0,1}

LX
j=1

P (s ∈ Cm
j )P m

j,e (3.7)

whereP m
j,e is the decoding error probability when the signals is

in the quantization cellCm
j . In the case of an additive white Gaus-

sian noise (AWGN) channel with a noise variance ofσ2
n, it can be

shown that the error probability of the MD decoder is expressed as8>>><>>>:
P 0

j,e = Q(| ((4L−j)+1)∆
4σn

| )
+
PL−1

i=1 | Q(| (4(i+1−j)−3)∆
4σn

|)−Q(| (4(i+1−j)−1)∆
4σn

| )|
P 1

j,e = Q(| (4(j−1)+1)∆
4σn

|)
+
PL

i=2 | Q(| (4(i−j)−3)∆
4σn

| )−Q(| (4(i−j)−1)∆
4σn

| )|

(3.8)

when L is even. In (3.8),Q(·) is the Gaussian Q-function and

Q(x) = 1√
2π

R∞
x

e−t2/2dt. A similar formula can be obtained
when L is odd.
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Fig. 2. Decoding error prob. for dither modulation when
D(S, X) = 0.21333
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Fig. 3. Decoding error prob. for dither modulation when
D(S, X) = 0.003338

The increase of quantization step size∆ will decrease the error
probability P m

j,e and Pe. This can be showed by the following
lemma.

Lemma 1 Whent >
√

4 ln 3 anda > 1
2
, functionf(t) = Q((a+

1
4
)t)−Q((a− 1

4
)t) is a decreasing function of the variablet.

Therefore the optimization problem for the uniform QW is to find
the largest allowable quantization step size∆opt with the distortion
constraintD1. One method to find∆opt is to set the distortion func-
tion (1.2) to the distortion constraintD1 and then find the largest
root of the equationD = D1. In general it’s difficult to determine
the roots mathematically. In the following, we will use a numerical
method to find∆opt.

Assume the equationdD
d∆

= 0 has only one root∆min. Then
we can show thatdD

d∆
> 0 if ∆ > ∆min. The average distortion

D is minimized withDmin at the point∆min. When∆ > ∆min,
the distortionD is a increasing function of∆. To determine∆opt

with a distortion constraintD1 which is greater thanDmin, we can
first determine the quantization step size∆min and then scale the
quantization step size with one coefficienta (a > 1) such that
D = D1. The optimal quantization step size is∆opt = a∆min.
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Fig. 4. Binary quantization watermarking with an even L

The root of the equationdD
d∆

= 0, i.e,∆min, could be obtained
by using the bisection method or Newton method. To find the
optimal quantization step size∆opt is equal to determining one of
the roots of the equationD−D1 = 0, which is greater than∆min.
By applying the same bisection method as in determining∆min,
∆opt can be located easily.

It can be verified thatdD
d∆

is an increasing function of the vari-
able∆ and has only one root for the equationdD

d∆
= 0 when the

host signal is Gaussian or Laplacian for a fixed codebook size L.
Denote the optimal quantization step size for a fixed codebook

size L as∆L
opt. When L is a variable we have the following theo-

rem.

Theorem 1 When the number of quantization levels is not fixed
for a binary uniform quantization watermarking scheme, the opti-
mal quantization step size is∆∞

opt = limL→∞∆L
opt.

By relaxing the constraint that the quantizers in the watermark-
ing scheme be uniform, we can get a more robust watermarking
encoding scheme by utilizing the statistics of the host signal.

III-B. Optimal Nonuniform Quantization Encoding

Optimal nonuniform quantization in source coding includes the
nearest neighbor rule and centroid rue with respect to the squared
error distortion measure. Applying the above two rules can de-
crease the distortion, but it doesn’t guarantee the decrease of the
decoding error probabilityPe. Thus a compromise is needed. The
detailed algorithm is stated as follows:

Step 1 First use the algorithm in subsection III-A to get an optimal
binary uniform quantization codebook set. Denote this ini-

tial quantization codebook set asB(1) = {B0(1)
, B1(1)},

and compute the average distortion asDB(1) using the for-
mula (1.2). Sett = 1 andi = 1. Compute the decoding
error probabilityP

(1)
e for this initial codebook set and set

s = 1. At high signal to noise ratios,Pe can be approxi-
mated as

Pe ∼ 1

2

X
m∈{0,1}

LX
j=1

P (s ∈ Cm
j )[ Q(

dm
j,F

2σn
) + Q(

dm
j,B

2σn
) ]

(3.9)
where8>><>>:

d0
j,F = |b0

j − b1
j−1|, j = 2, · · · , L

d0
j,B = d1

j,F = |b1
j − b0

j |, j = 1, · · · , L− 1
d1

j,B = |b0
j+1 − b1

j |, j = 1, · · · , L− 1
d0
1,F = d1

L,B = ∞

are illustrated in Figure 4 when L is even.
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Step 2 Given the codebook setB(t), find the centroid of the quan-
tization cell C0

i and denote it asb0
i

′
= E[S|S ∈ C0

i ].
Construct a temporary codebook setB

′
= {B′

0, B
′
1} such

thatB
′
0 = {b0

1, b
0
2, · · · , b0

i

′ · · · b0
L}, B

′
1 = B1 andz0

i

′
=

1
2
(b0

i

′
+b0

i+1

′
). Compute the decoding error probabilityP

′
e

for B
′
. If P

′
e < Pe, let B = B

′
, Pe = P

′
e ; otherwise leave

the old codebook set intact. Update the quantization cell
C1

i and the codebook set likewise to a new codebook set.

Step 3 Repeat the above operation untili = L, and we get a code-
book setB(t+1). Compute the corresponding distortion
DB(t+1) . If DB(t) − DB(t+1) < ε1 for some t, where
ε1 is a prescribed threshold, then go to Step 4; otherwise
increase t by 1, set i=1 and go to Step 2.

Step 4 Scale the codebooks in the codebook set with a coefficient
a(a > 1) using the bisection method such that we get a
new codebook set with the distortionD = D1. As the dis-
tance between signal constellations increases, the decoding
error probability will decrease. Compute the decoding er-
ror probability for this new codebook set and denote it as
P

(s+1)
e . If P

(s)
e − P

(s+1)
e < ε2 for somes, whereε2 is

a prescribed threshold, stop; otherwise increase s by 1, set
t = 1 andi = 1, denote the newly obtained codebook set
by B(1) and go to Step 2.

It’s easy to see that the algorithm will necessarily produce a se-
quence of codebook sets with monotone nonincreasing values of
the decoding error probability. Hence the algorithm will converge
to a final codebook set. Figure 5 is a comparison of the perfor-
mance of the optimal nonuniform QW vs the optimal uniform QW
whenS ∼ N (0, 1), the codebook size is 12 and the distortion
D(S, X) = 0.019089. From the graphs, we can see the optimal
nonuniform QW can achieve better performance. The difference
of SNR between the two methods is0.25 dB atPe = 10−5. At
Pe = 10−1, the difference increases to approximately0.55 dB.

The above optimal QW scheme can be directly applied to im-
age authentication when the watermark is required to be robust to
high quality JPEG compression as JPEG compression can be mod-
elled as one kind of Gaussian noise.

IV. APPLICATION IN IMAGE AUTHENTICATION

In this section we compare the robustness of our image authentica-
tion watermarking scheme incorporating the optimal nonuniform
quantization with the watermarking method developed by Kundur
and Hatzinakos[5] to high quality JPEG compression. Our water-
marking technique is developed in the S–transform domain, one
type of integer wavelet transforms, which can avoid the noise is-
sue caused by round operations of the pixel value when saving the
watermarked image using the transform domain watermarking[5].

Consider embedding a random sequence, one bit per coeffi-
cient, at each resolution level of the wavelet decomposition of
256×256 Lena image respectively with a mean square error (mse)
constraint of6 such thatPSNR ≈ 40 dB, which is a tolerated per-
turbation level for an image. We employ the optimal nonuniform
QW in each subband and a Laplacian pdf is used to model the dis-
tribution of the wavelet coefficients in each subband. In Kundur
and Hatzinakos’s scheme the quantization step size is set to2.2lw

such thatmse ≈ 6 wherelw is the resolution level.
We tested the decoding error probabilities with Kundur and

Hatzinakos’s(KH) scheme and our optimal nonuniform QW scheme

when the quality of JPEG compression ranges from 70 to 97. Ta-
ble 1 illustrates the experimental result when the quality of JPEG
compression is 92. We can see that the optimal nonuniform QW
achieves better performance, which is useful for lossy communi-
cations. Similar performance gains were also obtained for other
quality values.

V. CONCLUSIONS

In this paper we study how to improve the robustness of the quan-
tization watermarking. The optimal decoding and encoding strate-
gies are presented. Our technique can be applied to image authen-
tication where robustness to JPEG compression is required.
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Fig. 5. Decoding error probability for optimal binary quantization
watermarking

Pe lw = 1 lw = 2 lw = 3 lw = 4 lw = 5
KH 0.4252 0.1414 0.0436 0.0208 0.0052
QW 0.3972 0.0699 0.0111 0.0000 0.0000

Table 1. Decoding error prob. for KH’s scheme and optimal QW
scheme with a JPEG compression quality of 92
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