
NONLINEAR COLLUSION ATTACKS ON INDEPENDENT FINGERPRINTS
FOR MULTIMEDIA

Hong Zhao, Min Wu, Z. Jane Wang, and K. J. Ray Liu

Department of Electrical and Computer Engineering
University of Maryland, College Park, MD 20742

ABSTRACT

Digital fingerprinting is a technology for tracing the distribution of
multimedia content and protecting them from unauthorized redis-
tribution. Collusion attack is a cost effective attack against digi-
tal fingerprinting where several copies with the same content but
different fingerprints are combined to remove the original finger-
prints. In this paper, we investigate average and nonlinear collu-
sion attacks of independent Gaussian fingerprints and study both
their effectiveness and the perceptual quality. We also propose the
bounded Gaussian fingerprints to improve the perceptual quality of
the fingerprinted copies. We further discuss the tradeoff between
the robustness against collusion attacks and the perceptual quality
of a fingerprinting system.

1. INTRODUCTION

With the rapid development of multimedia and communication
technologies, an increasing amount of multimedia data are dis-
tributed through networks. This introduces an urgent demand to
insure the proper distribution and usage of content, especially con-
sidering the ease of manipulating digital multimedia data.

To prevent illegal duplication and redistribution of the content,
a digital fingerprinting system embeds unique identification infor-
mation into each distributed copy to trace customers who use their
copies inappropriately. There is a cost effective attack against digi-
tal fingerprinting, known ascollusion. In collusion attacks, several
users (colluders) get together, combine information from different
fingerprinted copies of the same host signal and generate a new
copy where the original fingerprints are removed or attenuated [1].
Digital fingerprinting should be resistant to collusion attacks as
well as to common signal processings.

An early work on digital fingerprint code and collusion attacks
assumed that colluders can detect and change a specific fingerprint
code bit if it has different values between several fingerprinted
copies [2]. Unlike generic data, fingerprints can be seamlessly em-
bedded into the multimedia data [3, 4] and each fingerprint code
bit can be spread over the entire multimedia content. Thus, the
difference between each fingerprint code bit is not easily identified
and changed. Therefore, the assumption of the collusion attack in
[2] is suitable mostly for generic data and the attacks in [1] are
more feasible for multimedia data.

In [1], several types of collusion attacks were studied and non-
linear attacks were shown to be more effective than the average
attack in removing uniformly distributed fingerprints. Simulation
results in [1] also show that Gaussian fingerprints are more resis-
tant to nonlinear collusion attacks than uniform fingerprints but
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analysis of the Gaussian fingerprint’s performance has not been
provided. In this paper, we focus on independent Gaussian finger-
prints and analyze both the effectiveness and the perceptual quality
of different collusion attacks. We use digital image as example, but
our results are applicable to other types of multimedia data.

The paper is organized as follows. Section 2 introduces the
fingerprinting and collusion attack system model. In Section 3,
we analyze the detection statistic under different collusion attacks.
In Section 4, we study the resistance of unbounded Gaussian fin-
gerprints. Section 5 proposes bounded Gaussian fingerprints to
improve the perceptual quality of fingerprinted copies. We then
discuss the tradeoff between the robustness against collusion at-
tacks and the perceptual quality that a designer of a fingerprinting
system has to address. Conclusions are drawn in Section 6.

2. SYSTEM MODEL

We consider a system that consists of three parts: fingerprint em-
bedding, collusion attacks, and fingerprint detection. Spread spec-
trum watermark embedding [3, 4] is widely used in watermark ap-
plications where the robustness of the watermark is required. As-
sume that there are a total ofM users in the system. Given a host
signal represented by a vectorS with lengthN , the owner chooses
a unique fingerprintWi of lengthN for useri = 1, · · · , M , and
generates the fingerprinted copyXi by Xi = S + αWi. α is
the Just-Noticeable-Difference (JND)from human visual models
[4] to guarantee the imperceptibility ofWi and control the energy
of the embedded fingerprints. We assume that theM fingerprints
{Wi} are chosen independently.

Assume thatK users collude andSC is the set containing the
indices of the colluders. We further assume that the collusion at-
tack is in the same domain as the fingerprint embedding. WithK
different copies{Xk}k∈SC , the colluders generate thejth (j =
1, · · · , N ) component of the attacked copyV = [V1, V2, · · · , VN ]T

using one of the following collusion functions:

Average: V ave
j =

X
k∈SC

Xk
j /K, (1)

Minimum: V min
j = min

k∈SC

{Xk
j },

Maximum: V max
j = max

k∈SC

{Xk
j },

Median: V med
j = mediank∈SC{Xk

j },
MinMax: V minmax

j = (V min
j + V max

j )/2,

Modified Negative: V modneg
j = V min

j + V max
j − V med

j ,

Randomized Negative: V randneg
j =

(
V min

j with prob.p,

V max
j with prob.1− p.
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Note that for our model, applying the collusion attacks to the fin-
gerprinted copies is equivalent to applying the collusion attacks to
the fingerprints. For example,Vmin = mink∈SC {S + αWk} =
S + α mink∈SC {Wk}.

In the detection process, the detector removes the host signal
from V and extracts the fingerprintY = g({Wk}k∈SC ), where
g(·) is one of the collusion functions defined in (1). The detector
measures the similarity betweenY and each of theM fingerprints
{Wi}, compares with a threshold, and outputs the estimated col-
luder set. In this paper, we use theZ statistic [1] to calculate the
similarity betweenY and{Wi} because theZ statistic is found
to be more robust against nonlinear collusion attacks than other
commonly used statistics [5]. TheZ statistic is defined as:

Zi =
1

2

√
N − 3 log

1 + ρi

1− ρi
, (2)

whereρi =
1
N

PN
j=1 YjW

i
j − 1

N
(
PN

j=1 Yj)
1
N

(
PN

j=1 W i
j )p

σ̂2
W σ̂2

Y

is the estimated correlation coefficient betweenY andWi, N is
the length of the watermark,̂σ2

W = 1
N−1

P
j (Wj − 1

N

PN
j=1 Wj)

2

and σ̂2
Y = 1

N−1

P
j (Yj − 1

N

PN
j=1 Yj)

2 are the unbiased esti-
mates of the original fingerprint’s variance and the extracted fin-
gerprint’s variance, respectively.Zi approximately follows Gaus-

sian distributionN (µi, 1) with µi = 1
2

√
N − 3 log 1+E[ρi]

1−E[ρi]
where

E[ρi] is the mean ofρi. If i ∈ SC , thenµi > 0. Otherwise,
µi = 0. (Note that{E[ρi]} are the same for alli ∈ SC , so we will
drop the superscripti for simplicity.)

We use the commonly used criteria to measure the effective-
ness of different attacks: the probability of capturing at least one
colluder (Pd) and the probability of falsely accusing at least one
innocent user (Pfp). We also considered other measurements like
the fraction of colluders that are successfully captured and the frac-
tion of users that are innocently accused. From the analysis in [5],
they have the same tendency asPd andPfp, and therefore are not
included in this paper.

When considering the perceptual quality of different attacks,
among all components of the noise (which is{nj = JNDj ·
Yj}N

j=1 in our problem), only those that exceed JND result in
perceptually distinguishable distortion. The mean square error
(MSE) uses the total energy of the noise, so it is not an appro-
priate measurement of the perceptual distortion. We redefine MSE

by MSEJND
4
=
PN

j=1 n
′2
j , where

n′j =

8><>:nj + JNDj if nj < −JNDj ,

0 if − JNDj ≤ nj ≤ JNDj ,

nj − JNDj if nj > JNDj .

(3)

3. ANALYSIS OF DIFFERENT COLLUSION ATTACKS

3.1. Analysis ofE[ρ] under Different Attacks

From the analysis in the previous section, in order to analyze the
effectiveness of different collusion attacks, we first need to study
E[ρ] for i ∈ SC . Under the assumption that{W i

j } are i.i.d. dis-
tributed with zero mean and varianceσ2

W , {g({W k
j }k∈SC )W i

j}N
j=1

are also i.i.d. distributed. Recall thatE[ρ] is the correlation coeffi-
cient betweenY andWi (we will drop the subscriptj for simpli-

fication), sinceE[W i] = 0, we have

E[ρ] =
cov

�
g({W k}k∈SC ), W i

�p
σ2

W σ2
Y

=
E
�
g({W k}k∈SC )W i

�p
σ2

W σ2
Y

.

Therefore,E
�
g({W k}k∈SC )W i

�
andσ2

Y are needed for the sta-
tistical analysis ofZ statistic under each attack.

For the average attack, ifi ∈ SC , then

E

24 X
k∈SC

W k

K
W i

35 =
σ2

W

K
, andσ2

Y = var

24 X
k∈SC

W k

K

35 =
σ2

W

K
.

For the minimum attack, if{W i} has the pdff(x) and the cdf
F (x), and if the number of colluders isK, the pdf ofW min =
mink∈SC {W k} is [6]:

fW min(w) = Kf(w)[1− F (w)]K−1. (4)

σ2
Y can be calculated from the definition of variance. In order to

calculate the correlation betweenW min andW i for i ∈ SC , we
can express the joint pdf ofW min andW i as follows:

fW min,W i(w
′, w) (5)

=

(
f(w′)[1− F (w′)]K−1 if W min = W i,

(K − 1)f(w′)f(w)[1− F (w′)]K−2 if W min < W i.

From (5) and the definition of correlation, fori ∈ SC , we have

E[W minW i] = E[W minW i]1 + E[W minW i]2,

where E[W minW i]1 =

Z ∞

−∞
w
′2f(w′)[1− F (w′)]K−1 dw′

and E[W minW i]2 =

Z ∞

−∞
w′(K − 1)f(w′)×

[1− F (w′)]K−2

�Z ∞

w′
wf(w) dw

�
dw′. (6)

For the maximum and median attacks , the analysis is similar
and detailed derivation is available in [5].

For the MinMax attack withW minmax = 1
2
(W min+W max),

var[W minmax] =
1

4

�
var[W min] + var[W max]

�
(7)

+
1

2
cov[W min, W max],

E[W minmaxW i] =
1

2

�
E[W minW i] + E[W maxW i]

�
,

where the covariance ofW min andW max can be calculated from
the joint pdf ofW min andW max, which is

fW min,W max(w′, w′′)
= K(K − 1)f(w′)f(w′′)[F (w′′)− F (w′)]K−2. (8)

The analysis of the modified negative attack (ModNeg) is sim-
ilar to the MinMax attack and can be found in [5].

For the randomized negative attack (RandNeg), we assume
that p is independent of{W i}. The colluded fingerprint can be
rewritten asW randneg = W minBp +W max(1−Bp), whereBp

is a Bernoulli random variable with parameterp and is independent
of {W i}. Thus themth moment (m = 1, 2, · · · ) of W randnegW i

and ofW randneg are

E[(W randnegW i)m] = E[E[(W randnegW i)m|Bp]]
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= p · E[(W minW i)m] + (1− p) · E[(W maxW i)m],

and E[(W randneg)m] = E[E[(W randneg)m|Bp]]

= p · E[(W min)m] + (1− p) · E[(W max)m], (9)

from which we can calculateE
�
g({W k}k∈SC )W i

�
andσ2

Y .

3.2. Analysis ofPd and Pfp

From the analysis ofE[ρ] in the previous section,Zi can be ap-
proximated with the following distribution:

Zi ∼
(
N (0, 1) if i /∈ SC ,

N ( 1
2

√
N − 3 log 1+E[ρ]

1−E[ρ]
, 1) if i ∈ SC ,

where E[ρ] = E[g({W k}k∈SC )W i]/
q

σ2
W σ2

Y . (10)

Let us defineµZ
4
= 1

2

√
N − 3 log 1+E[ρ]

1−E[ρ]
. Among theM statistics

{Zi}M
i=1, K of them are normally distributed withN (µZ , 1) and

the others are normally distributed withN (0, 1). If they are un-
correlated with each other or the correlation is very small, for a
given thresholdh, Pd andPfp can be approximated with

Pd = P [max
i∈SC

Zi > h] ≈ 1− (1−Q(h− µZ))K

and Pfp = P [max
i/∈SC

Zi > h] ≈ 1− (1−Q(h))M−K ,(11)

whereQ(x) =
R∞

x
1√
2π

e−
1
2 t2dt is the Gaussian tail function.

3.3. Analysis ofMSEJND

For our digital fingerprinting and collusion attack model, given
the collusion attackg(·) and the number of colludersK, if the col-
luded fingerprintg({W k}k∈SC ) has the pdffg,K(w), thenMSEJND

can be simplified as:

MSEJND = N

�Z −1

−∞
(w + 1)2fg,K(w) dw

+

Z ∞

1

(w − 1)2fg,K(w) dw

�
. (12)

4. UNBOUNDED GAUSSIAN FINGERPRINTS

It was shown in [1] that uniformly distributed fingerprints can be
easily defeated by nonlinear collusion attacks. The simulation re-
sults showed that Gaussian fingerprints are more resistant to non-
linear collusion attacks than uniform fingerprints. However, anal-
ysis on the resistance of Gaussian fingerprints to nonlinear col-
lusion attacks was not provided. In this section, we study the
performance of unbounded Gaussian fingerprints. Assume that
fingerprints{W i

j} are generated from i.i.d. normal distribution
N (0, σ2

W ). Usually we takeσW ≈ 1
3

because it is required that
almost all fingerprints (e.g.,≥ 99.9%) are in the range of[−1, 1]
and do not introduce perceptual distortion. For the randomized
negative attack, we takep = 0.5 for the Bernoulli random variable
Bp and assume that it is independent of{W i

j}.
Given the analysis in the previous section, we first calculate

E[g({W k}k∈SC )W i] and σ2
Y for Gaussian fingerprints. Since

there are terms ofQK(·) in the pdf (4) and the joint pdfs (5)(8),
analytical expressions are not available for the integration. We use
recursive adaptive Simpson quadrature [7] to numerically evaluate
the integrals with an absolute error tolerance of10−6.

Our numerical results show that for a given number of collud-
ersK, E[g({W k}k∈SC )W i] of different collusion attacks are the
same and equal toσ2

W /K. Different collusion attacks have dif-
ferentσ2

Y , as shown in Figure 1: the randomized negative attack
has much larger variance than the other attacks, especially when
the number of colluders is large; the modified negative attack has
the second largest variance followed by the minimum and max-
imum attacks; the variances of the average, median and MinMax
attacks are similar and the smallest. Consequently, from our analy-
sis onE[ρ], Pd andPfp, the average, median and MinMax attacks
are the least efficient attacks followed by the minimum, maximum
and modified negative attacks. The randomized negative attack is
the most effective attack. Our simulation results shown in Figure
2(a) agree with the analysis. Therefore, from the colluder’s point
of view, the best strategy for them is to choose the randomized
negative attack.

So far we have studied the detection performance of theZ
statistic under different collusion attacks. As to the perceptual
quality, Figure 3 showsMSEJND/N of different collusion at-
tacks with i.i.d.N (0, 1

9
) fingerprints. We can show that the min-

imum, maximum and randomized negative attacks yield the same
MSEJND. As we can see from Figure 3, although the random-
ized negative attacks is more effective than other attacks studied, it
also introduces much larger distortion than JND, which is propor-
tional to the number of colluders. This is because the fingerprinted
signal is not bounded and in fact, such unbounded fingerprint can
introduce noticeable distortions even without collusion.

5. BOUNDED GAUSSIAN FINGERPRINTS

In order to achieve both robustness and imperceptibility of the fin-
gerprints, one possible solution for designers is to decreaseσ2

W .
However, decreasingσ2

W means reducing the energy of the embed-
ded fingerprints, so the fingerprints are more vulnerable to attacks.
In order to remove the perceptual distortion without reducing the
energy of the embedded fingerprints, we introduce the bounded
Gaussian fingerprints and study their performance under collusion.

Assume thatfX(·) andFX(·) are the pdf and cdf of a Gaus-
sian random variable with zero mean and varianceσ2

W respec-
tively. The pdf of a bounded Gaussian distributionf ′X(·) is:

f ′X(x) =

(
fX (x)

FX (1)−FX (−1)
if − 1 ≤ x ≤ 1,

0 otherwise.
(13)

It is easy to show that fingerprints following pdf (13) has zero mean
and varianceσ2

W , andMSEJND = 0 for fingerprinted copies,
i.e., the fingerprints introduce no perceptual distortion. By bound-
ing the fingerprints in the range of[−1, 1], we maintain the energy
of the embedded fingerprints while achieving the imperceptibility.

For the bounded Gaussian fingerprints having distribution (13),
the analysis of theZ statistics under different attacks is similar to
the unbounded Gaussian case and is not repeated here. The simu-
lation results for bounded Gaussian fingerprints are shown in Fig-
ure 2(b). From Figure 2(b), we find that the randomized negative
attack is still the most effective attack followed by the modified
negative attack; all the other attacks have similar performance.

Since the original fingerprints are bounded by JND, all attacks
haveMSEJND = 0. As a consequence, none of the attacks stud-
ied introduce perceptual distortion in the case of bounded finger-
prints. Therefore, the colluders can choose the most effective at-
tack without worrying about the perceptual quality.
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6. CONCLUSIONS

In this paper, we have studied the resistance of independent Gaus-
sian fingerprints to both average and nonlinear collusion attacks.
We have also introduced the bounded Gaussian fingerprints to re-
move the perceptual distortion introduced by the unbounded Gaus-
sian fingerprints. Based on both our analytical and simulation re-
sults, we have found that the randomized negative attack is the
most efficient attack against both unbounded and bounded Gaus-
sian fingerprints. In the former case, perceivable distortion may
exist in the fingerprinted signals even when without collusion, and
the randomized negative attack can introduce larger distortion, thus
the colluders may prefer not to choose the randomized negative
attack if imperceptibility is required. In the latter case, both the
designers and the attackers do not introduce perceptual distortion,
and the attackers can choose the most effective attack without per-
ceptual concerns. Therefore, designers of fingerprinting systems
should address the tradeoff between the robustness against collu-
sion attacks and the perceptual quality of the fingerprinted copies.
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Fig. 2. Pd of different attacks withσ2
W = 1/9 and fixedPfp =

10−3. Assume that there are a total ofM = 100 users and the host
image hasN = 104 embeddable coefficients. Results are based
on 2000 simulations. Simulation results on real images have the
same tendency and therefore are not shown here.
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