NONLINEAR COLLUSION ATTACKS ON INDEPENDENT FINGERPRINTS
FOR MULTIMEDIA

Hong Zhao, Min Wu, Z. Jane Wang, and K. J. Ray Liu

Department of Electrical and Computer Engineering
University of Maryland, College Park, MD 20742

ABSTRACT analysis of the Gaussian fingerprint's performance has not been
provided. In this paper, we focus on independent Gaussian finger-
prints and analyze both the effectiveness and the perceptual quality
of different collusion attacks. We use digital image as example, but
tour results are applicable to other types of multimedia data.

Digital fingerprinting is a technology for tracing the distribution of

multimedia content and protecting them from unauthorized redis-
tribution. Collusion attack is a cost effective attack against digi-
tal fingerprinting where several copies with the same content bu - ) . -
different fingerprints are combined to remove the original finger- _. The_ paper 1 organlz_ed as follows. Section 2 mtroducgs the
prints. In this paper, we investigate average and nonlinear coIIu-flngerprlntlng and coI[usmn a.lttf.iCk system model. In .Sectlon 3,

sion attacks of independent Gaussian fingerprints and study bothV€ ana_lyze the detection statls_tlc under different collusion at_tack_s.
their effectiveness and the perceptual quality. We also propose the" Se_ct|on 4, we study the resistance of unbounqled Qaussu_";m fin-
bounded Gaussian fingerprints to improve the perceptual quality Ofgerprlnts. Section 5 Proposes boqnded .Gaussmn.flngerprlnts to
the fingerprinted copies. We further discuss the tradeoff between!MProve the perceptual quality of fingerprinted copies. We then

the robustness against collusion attacks and the perceptual qualit iscuss the tradeoff between_the robustne_ss against COHUS'.OU at-
of a fingerprinting system acks and the perceptual quality that a designer of a fingerprinting

system has to address. Conclusions are drawn in Section 6.

1. INTRODUCTION 2 SYSTEM MODEL

With the rapid development of multimedia and communication
technologies, an increasing amount of multimedia data are dis-
tributed through networks. This introduces an urgent demand to
insure the proper distribution and usage of content, especially con-
sidering the ease of manipulating digital multimedia data.

To prevent illegal duplication and redistribution of the content,
a digital fingerprinting system embeds unique identification infor-
mation into each distributed copy to trace customers who use their
copies inappropriately. There is a cost effective attack against digi-
tal fingerprinting, known asollusion In collusion attacks, several
users (colluders) get together, combine information from differen
fingerprinted copies of the same host signal and generate a ne' ; .
copy where the original fingerprints are removed or attenuated [1]. {W'} are chosen independently.

Digital fingerprinting should be resistant to collusion attacks as . ~Assume thati users collude anic is the set containing .the
well as to common signal processings. indices of the colluders. We further assume that the collusion at-

An early work on digital fingerprint code and collusion attacks ta_‘;k s in the_samXekdomain z;s the”fir(;gerprint embedqeil:g.' V’ilith
assumed that colluders can detect and change a specific fingerprin?I ere%comes{ }kefch' the C(I)< l:j ers gfn(‘e/rat‘(i t OV_T
code bit if it has different values between several fingerprinted =2 "> )c?rrllpofnintq ¢ ealllttap ef copy = [ 1, V2,00, Vil
copies [2]. Unlike generic data, fingerprints can be seamlessly em-USiNg one of the following collusion functions:
bedded into the multimedia data [3, 4] and each fingerprint code Average:  Vave _ Xk 1
bit can be spread over the entire multimedia content. Thus, the ge: J Z A @

We consider a system that consists of three parts: fingerprint em-
bedding, collusion attacks, and fingerprint detection. Spread spec-
trum watermark embedding [3, 4] is widely used in watermark ap-
plications where the robustness of the watermark is required. As-
sume that there are a total df users in the system. Given a host
signal represented by a vec®mwith length NV, the owner chooses

a unique fingerprinW? of length NV for useri = 1,--- , M, and
generates the fingerprinted cop§/ by X’ = S + aW*'. ais

the Just-Noticeable-Difference (JNDjom human visual models

t [4] to guarantee the imperceptibility 8¢ and control the energy

f the embedded fingerprints. We assume thatithéngerprints

difference between each fingerprint code bit is not easily identified _ kese ,
and changed. Therefore, the assumption of the collusion attack in Minimum: V™" = Join {X}},
[2] is suitable mostly for generic data and the attacks in [1] are ) ¢ X
more feasible for multimedia data. Maximum:  Vj"* = Jnax {X5}

In [1], several types of collusion attacks were studied and non- . med C &
linear attacks were shown to be more effective than the average Median:  V; = mediancs {X;},
attack in removing uniformly distributed fingerprints. Simulation MinMax: ijimnaw = (Vj'"”” + V") /2,

results in [1] also show that Gaussian fingerprints are more resis-

. . . . . i A modneg __ yymin maz _ yymed
tant to nonlinear collusion attacks than uniform fingerprints but ~ Modified Negative: V; =V 4V Vit

J

V™™ with prob. p,

Ve with prob.1 — p.
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Note that for our model, applying the collusion attacks to the fin- fication), sinceE[IW*] = 0, we have
gerprinted copies is equivalent to applying the collusion attacks to

the fingerprints. For exampl®™™ = minges, {S + aW*} = Elp] = cov [g({Wk}kESc)vWi] _ b [9({Wk}k65c)wi]
S + aminges, {WF}. 02,0 02,0

In the detection process, the detector removes the host signal . ,
from V and extracts the fingerpritd = g({W*}res,.), where ~ Therefore,E [¢({W*}es,)W'] andoy are needed for the sta-
g(+) is one of the collusion functions defined in (1). The detector tistical analysis ofZ statistic under each attack.

measures the similarity betweahand each of thé/ fingerprints For the average attack,ife Sc, then

{W*}, compares with a threshold, and outputs the estimated col- -| [ -|

luder set. In this paper, we use thestatistic [1] to calculate the wk__. o 2 wk _ o3
similarity betweenY and{W'} because the statistic is found E [ Z =W J K andoy = var Z |- K-

L& K] K

For the minimum attack, W} has the pdff (z) and the cdf
F(z), and if the number of colluders &, the pdf of W™ =

to be more robust against nonlinear collusion attacks than other ~L¥€5¢

commonly used statistics [5]. The statistic is defined as:

1—|—pi

A % N —3log T ) minges. {W"} is [6]:
) ) ) _ . K—1
wherey’ — LN VWi LN v RN, W) Swmin(w) = Kf(w)[l = F(w)]" . 4
63,03 o3 can be calculated from the definition of variance. In order to

calculate the correlation betwe&ri™ ™ andW* for i € Sc, we

is the estimated correlation coefficient betwéérandv&x, Nis can express the joint pdf 67" andW* as follows:

22 1 1 2

the Iength oft:]e watermarlsr, =g Wi — 5 252 Wi) Foymin i (@', w) ©)

and o v Yi—w E  ,Y;)? are the unbiased esti- ) R _ , ‘

mates of the original flngerpnnts variance and the extracted fin- ] f(w')[1 — F(w")]"~ if Wt =W,

gerprint’s variance, respectivelf’ apprOX|mater foIIows Gaus- (K =) f(w)f(w)[1 — F(w)*2 if W™ < W,

sian distributionV' (1", 1) with 1" = 1+/N —3log 1+ ”E where
E[p"] is the mean of’. If i € Sc, theny’ > 0. Other\lee o o o
u' = 0. (Note that{ E[p']} are the same for all€ S¢, so we will EW™" W' = E[W™"W']1 + E[W™"W']2,
drop the superscrigtfor simplicity.) h min i /OO 2 / NE—=1 ; 1
re £ = 1-F

We use the commonly used criteria to measure the effective- where - E[W™W oo w f (W)l ()] dw
ness of different attacks: the probability of capturing at least one mintriy [ /
colluder (P;) and the probability of falsely accusing at least one and  E[W™"W']> = [m w (K = 1) f(w)x
innocent user®y,). We also considered other measurements like Ko o0
the fraction of colluders that are successfully captured and the frac- (1—F(w)] (// wf(w) ) dw'. (6)
tion of users that are innocently accused. From the analysis in [5], v
they have the same tendency/asand Py, and therefore are not For the maximum and median attacks , the analysis is similar
included in this paper. and detailed derivation is available in [5]. .

When considering the perceptual quality of different attacks, For the MinMax attack witt/ ™% = L(W ™" W ™mee),
among all components of the noise (which{is; = JND; -

From (5) and the definition of correlation, foe Sc, we have

Y;})_, in our problem), only those that exceed JND result in var[ W™ = 1 (mr[Wmi"} + vm«[wm‘”]) @)
perceptually distinguishable distortion. The mean square error 4 1
(MSE) uses the total energy of the noise, so it is not an appro- +7COU[WW”7 wmer,
priate measurement of the perceptual distortion. We redefine MSE ) 2
A ’ minmazx i min 7 max 1

by MSE;np= 3N, n/?, where E[W W= 3 (E[W W + E[W™* W ]) ,

nj + JND; if n; < —JND;, V\r/]he.reT thediovfari?nrlge (MC/JI mziﬂggdl/l;]m;“ can be calculated from

n;_: 0 if —JND,<n, <JND;, (3) the joint pdf of W andW , Which is
nj — JND; ifn; > JND;. fwmin wmas (W', w")
= K(K-1)f()fw")[F") - Fw)*2 ()
3. ANALYSIS OF DIFFERENT COLLUSION ATTACKS The analysis of the modified negative attack (ModNeg) is sim-

_ _ ilar to the MinMax attack and can be found in [5].

3.1. Analysis ofE[p] under Different Attacks For the randomized negative attack (RandNeg), we assume

thatp is independent of W*}. The colluded fingerprint can be
rewritten agy mendnes — wmin g 4 Wwmee(1 - B,), whereB,
is a Bernoullirandom variable with parameteand is independent
of {W*}. Thus thenth momentfn = 1,2, - - -) of Wrendnegyy?

From the analysis in the previous section, in order to analyze the
effectiveness of different collusion attacks, we first need to study
Elp] for i € Sc. Under the assumption th&tV; } are i.i.d. dis-

tributed with zero mean and varianeg,, {g({W, }resc )W} o, and of (7 "@mdnes gre
are also i.i.d. distributed. Recall thAfp] is the correlation coeffi- , .
cient betweerY andW* (we will drop the subscripf for simpli- E[((wrendnesyyiym] = BIE[(WT ™9 W ™| B,]]
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= P E[WWY (1= p) - B[V,
and  E[(1V7"""0)"] = B[B[(W™*"")" | ]
p- EIW™")"] + (1= p) - E[(W"*)"),

©)

from which we can calculate [g({W*}res.)W*] andoy..

3.2. Analysis of P; and Py,

From the analysis oF[p] in the previous sectionz’® can be ap-
proximated with the following distribution:

i N(0,1) if i ¢ Sc,

N(3VN =3log 54, 1) if i€ Se,
where Elp] = E[g({W"}esc)W']/\Jodo%.  (10)
Let us definmzééx/N —3log }fg% Among theM statistics

{Z'}M,, K of them are normally distributed with/' (.2, 1) and

the others are normally distributed witf(0, 1). If they are un-
correlated with each other or the correlation is very small, for a
given threshold:, P; and Py, can be approximated with

P, =

Plmax 7' > hj~ 1= (1= Q(h— pz)™

and Py, P[_rggx Z'>hl~1-(1-Qh)M *1)
i€Sc

whereQ(z) = [* \/%e*%ﬁdt is the Gaussian tail function.

3.3. Analysis of M SE;nD

For our digital fingerprinting and collusion attack model, given
the collusion attack(-) and the number of colludefs, if the col-
luded fingerpring({W*}res.. ) has the pdf,, x (w), thenM SE np

can be simplified as:
-1
“{f

[T a}. a2)

MSE np (w+1)% fg.x (w) dw

4. UNBOUNDED GAUSSIAN FINGERPRINTS

It was shown in [1] that uniformly distributed fingerprints can be

Our numerical results show that for a given number of collud-
erskK, E[g({W*}res.)W'] of different collusion attacks are the
same and equal te, /K. Different collusion attacks have dif-
ferento?, as shown in Figure 1: the randomized negative attack
has much larger variance than the other attacks, especially when
the number of colluders is large; the modified negative attack has
the second largest variance followed by the minimum and max-
imum attacks; the variances of the average, median and MinMax
attacks are similar and the smallest. Consequently, from our analy-
sis onE|[p], P; and Py, the average, median and MinMax attacks
are the least efficient attacks followed by the minimum, maximum
and modified negative attacks. The randomized negative attack is
the most effective attack. Our simulation results shown in Figure
2(a) agree with the analysis. Therefore, from the colluder’s point
of view, the best strategy for them is to choose the randomized
negative attack.

So far we have studied the detection performance ofZhe
statistic under different collusion attacks. As to the perceptual
quality, Figure 3 shows\/ SE;np /N of different collusion at-
tacks with i.i.d. \'(0, §) fingerprints. We can show that the min-
imum, maximum and randomized negative attacks yield the same
MSE; ;np. As we can see from Figure 3, although the random-
ized negative attacks is more effective than other attacks studied, it
also introduces much larger distortion than JND, which is propor-
tional to the number of colluders. This is because the fingerprinted
signal is not bounded and in fact, such unbounded fingerprint can
introduce noticeable distortions even without collusion.

5. BOUNDED GAUSSIAN FINGERPRINTS

In order to achieve both robustness and imperceptibility of the fin-
gerprints, one possible solution for designers is to decregse
However, decreasing?, means reducing the energy of the embed-
ded fingerprints, so the fingerprints are more vulnerable to attacks.
In order to remove the perceptual distortion without reducing the
energy of the embedded fingerprints, we introduce the bounded
Gaussian fingerprints and study their performance under collusion.

Assume thatfx (-) and F'x (-) are the pdf and cdf of a Gaus-
sian random variable with zero mean and varianée respec-
tively. The pdf of a bounded Gaussian distributigia(-) is:

if —1<x<1,

: (13)
otherwise.

fx(x)
fé((l’) — Fx(1)-Fx(-1)
0

easily defeated by nonlinear collusion attacks. The simulation re-

sults showed that Gaussian fingerprints are more resistant to nonit is easy to show that fingerprints following pdf (13) has zero mean
linear collusion attacks than uniform fingerprints. However, anal- and variancer,, and M SE;nyp = 0 for fingerprinted copies,
ysis on the resistance of Gaussian fingerprints to nonlinear col-i.e., the fingerprints introduce no perceptual distortion. By bound-
lusion attacks was not provided. In this section, we study the ing the fingerprints in the range pf 1, 1], we maintain the energy
performance of unbounded Gaussian fingerprints. Assume thatof the embedded fingerprints while achieving the imperceptibility.

fingerprints{W}} are generated from i.i.d. normal distribution
N(0,07y). Usually we takery ~ + because it is required that
almost all fingerprints (e.g% 99.9%) are in the range of-1, 1]

For the bounded Gaussian fingerprints having distribution (13),
the analysis of the&Z statistics under different attacks is similar to
the unbounded Gaussian case and is not repeated here. The simu-

and do not introduce perceptual distortion. For the randomized lation results for bounded Gaussian fingerprints are shown in Fig-

negative attack, we take= 0.5 for the Bernoulli random variable
B, and assume that it is independent{&¥’; }.

ure 2(b). From Figure 2(b), we find that the randomized negative
attack is still the most effective attack followed by the modified

Given the analysis in the previous section, we first calculate negative attack; all the other attacks have similar performance.

Elg({W*}res.)W'] and o3 for Gaussian fingerprints. Since
there are terms af™ (-) in the pdf (4) and the joint pdfs (5)(8),

Since the original fingerprints are bounded by JND, all attacks
haveM SE;np = 0. As a consequence, none of the attacks stud-

analytical expressions are not available for the integration. We useied introduce perceptual distortion in the case of bounded finger-
recursive adaptive Simpson quadrature [7] to numerically evaluateprints. Therefore, the colluders can choose the most effective at-

the integrals with an absolute error toleranca @f°®.

tack without worrying about the perceptual quality.
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6. CONCLUSIONS

In this paper, we have studied the resistance of independent Gaus-
sian fingerprints to both average and nonlinear collusion attacks.
We have also introduced the bounded Gaussian fingerprints to re-
move the perceptual distortion introduced by the unbounded Gaus-
sian fingerprints. Based on both our analytical and simulation re-
sults, we have found that the randomized negative attack is the
most efficient attack against both unbounded and bounded Gaus-
sian fingerprints. In the former case, perceivable distortion may
exist in the fingerprinted signals even when without collusion, and
the randomized negative attack can introduce larger distortion, thus
the colluders may prefer not to choose the randomized negative
attack if imperceptibility is required. In the latter case, both the
designers and the attackers do not introduce perceptual distortion,
and the attackers can choose the most effective attack without per-
ceptual concerns. Therefore, designers of fingerprinting systems
should address the tradeoff between the robustness against collu-
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