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ABSTRACT

We present an enhanced sinusoidal modeling system that
efficiently parameterizes spectral peaks by linear frequency
chirp rate, in addition to the standard parameters of ampli-
tude, center frequency, and phase. Similar to a conventional
sinusoidal modeling systems, the current system operates
in a frame-by-frame manner, but also efficiently obtains a
chirp parameter estimate for each peak in a given frame.
We demonstrate an application to voice coding where our
model captures most of the significant signal information
in a spectrogram operating at double the current system’s
frame rate.

1. INTRODUCTION

In the field of audio signal processing, sinusoidal modeling
is a fundamentally important signal representation. It finds
applications in audio coding, speech enhancement, sound
source separation, and pitch tracking. All these applications
benefit from high quality sinusoidal parameters.

In conventional sinusoidal modeling [1, 2], these param-
eters are defined as frequency, amplitude and phase of each
frequency component. Other efforts have focused on non-
sinusoidal parameters such as bandlimited noise [3] or tran-
sients [4].

Efforts have also been made to expand or improve si-
nusoidal parameters. Matching-pursuit [5] seeks to identify
exponentially decaying envelopes of quasistationary sinu-
soids. Linear frequency chirp rates of frequency compo-
nents have been estimated [6], when constant- or Gaussian-
amplitude time envelopes are present. A dynamic vocoder
model [7] has been used to estimate very accurate sinusoidal
trajectories within each frame, but at great computational
expense.

We present a new technique that efficiently and robustly
obtains the linear chirp parameter. The current estimation
technique is robust to phase shift, and to time domain am-
plitude modulation.

�Supported by the National Science Foundation

2. THEORY

To develop our model, we first consider a simple discrete
time linear frequency chirp signal:
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where � is the one-half the chirp rate in radians per sample.
We may write the DFT of the rectangle-windowed signal as
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where � is the odd-sample zero phase window length and

 is the length of the optionally zero padded transform. It
may be shown [8] that for sufficiently large � and � ,

� ��� � � ���

� ��� �

� �

��


���
�


������� (3)

where we have applied the midpoint approximation to the
definite integral of the analogous continuous time chirp,
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Considering the above integral, it may be shown [9] that
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and we see by inspection that this expression becomes zero
when � � 
, indicating a stationary point at the center fre-
quency. When using a Hann window, it may be shown [9]
that:
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and the second derivative evaluated at � � 
 becomes
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By choosing 
 sufficiently large, we may approximate
the second order derivative with a second order difference.
Doing so and solving for � yields
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where we note that second order differencing operation with
respect to frequency bin � has been normalized by twice
multiplying by 	

�

. This expression will serve as the main

part of the chirp parameter estimator.

3. MODEL APPLICATION

We now may consider a more general and practical discrete
time signal model for a given spectral peak:

���� � ��������� � �	�� ���� (6)

where � is one-half the chirp rate in radians (increased) per
sample, �	 is the center frequency in radians per sample,
and � is the phase offset. The DFT of ���� is ����.

To estimate � from ����, it may be shown [8] that we
may use our estimator in eqn. 5, provided that we consider
� corresponding to �	 rather than � � 
. It may also be
shown [9] that the estimator is valid when � �� 
.

We may also use the estimator when � order polyno-
mial amplitude modulation occurs in the signal. To prove
that this is valid, we first recall that taking an order 3 or
higher derivative (approximated by differencing) of � ���
yields zero. Now, recalling that order � polynomial ampli-
tude modulation in the time domain corresponds to order �
differentiation (approximated by differencing) and multipli-
cation by � in the frequency domain, we see that such AM
cannot influence our estimator.

Although our estimator survives these conditions, it can-
not function normally when � or � is very small. (Because
we will treat � as the fixed frame length of the system, we
may view this as a constraint on �.) The error occurs be-
cause we cannot achieve the spectral resolution needed to
accurately estimate the very large second order derivative
in eqn. 4 with a second order difference, barring a �	� in-
crease in 
. The error manifests itself in a predictable way,
however, with the estimated � value from eqn. 5 showing an
imaginary part when in fact the estimate should be purely
real. This imaginary part mimics the ratio of the real part to
the correct � value, allowing us to solve the equation
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as a least squares problem to obtain optimal coefficients
�
 and ��. We may then substitute these and the real and
imaginary parts of the eqn. 5 estimate and solve for � in
cases where the initial estimator’s guess is below our small-
ness threshold of 0.08 radians per � -sample window. (This
was found to be reasonable when using zero padding to

 � �� .) Doing so creates a small-� estimator that is as
accurate for small � as eqn. 5 is for larger �. Results show-
ing the estimator applied to a range of � values are shown
in figure 1. In that figure, �	 � 
, � � �
� and 
 � �
��.
An arbitrary affine amplitude modulation of 
�� � 
�

��
was applied as was a phase shift of � � 
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Fig. 1. Results achieved by the small-� and general estima-
tor.

4. SYSTEM OPERATION

The overall structure of our system is similar to conven-
tional sinusoidal modeling. First, each frame is read in to
a buffer, which is FFT’d and then analyzed for peaks. A
parabola is fit to the log of each magnitude peak, yielding
accurate magnitude and frequency estimates. A phase esti-
mate is also recorded, and is normalized by the chirp param-
eter after the latter is estimated. (This is necessary because
of the nonlinear mapping of phase offsets to detected peak
phase for chirp signals.)

Next, we apply the estimator in eqns. 5 and 7 as ap-
propriate to each peak, assigning a chirp parameter to each.
When calculating the second order difference in eqn. 5, we
use the � ��� values at the nearest frequency bin � to the
detected peak (and its neighbors � 	 �) in the calculation.
In the future, we may try to use linear or other interpola-
tion of � ��� to use values corresponding more exactly to
the interpolated peak center frequency of the component.

We leave the task of frequency trajectory alignment across
frames to future work. We note that since our chirp and
phase parameters are detected with great accuracy, it may
no longer be necessary to align such trajectories. Direct
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synthesis of the detected frequency components via IFFT
or a bank of oscillators will be explored as an alternative to
trajectory alignment.

5. RESULTS

We provide two examples of the application of our sys-
tem. For each example, we provide both a spectrogram,
which hints at the capabilities of a conventional SMS sys-
tem, and trajectory plot. The trajectory plot includes the
center frequency for each detected peak (shown as a bold
dot) and a line showing the linear frequency trajectory esti-
mated by our chirp detector. Because 50% overlap of win-
dows was used in our system, each linear trajectory is ex-
tended only half way to the adjacent frame. Hence, the tra-
jectories should meet up between frames if our estimator is
accurate. Indeed, this can in general be seen.

We see that most of the information gleaned from the
spectrogram can be observed in our trajectory plot, and we
recall that our system is operating at one half the frame rate
of the spectrogram. Hence, we may consider our system
an improvement to conventional SMS in that we have both
reduced the frame rate by a factor of 2 and captured the
essential features of the signal.

In the first example figures, we see the female speech
utterance “you always” and in in the second example figures
the female speech utterance “example” [10].
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Fig. 2. “You always” Speech Trajectory Plot.
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Fig. 3. “You always” Speech Spectrogram.
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Fig. 4. “Example” Speech Trajectory Plot.
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Fig. 5. “Example” Speech Spectrogram.

6. SUMMARY AND FUTURE DIRECTIONS

We have presented a system that obtains linear frequency
chirp parameters efficiently and accurately. The system is
significant because it reduces the frame rate needed to cap-
ture the essential features of input signals, while incurring
little computational expense at the frame level.

Future work will focus on making the chirp parameter
estimation more consistent. We will attempt spectral inter-
polation for the derivative estimates in eqn. 5 and will inves-
tigate combining estimates from multiple chirp estimators
into a more robust estimate.

The task of intra-frame trajectory matching is yet to be
addressed. This could provide for a significant area of ex-
ploration, with trajectory matching incorporating a confi-
dence measure in the chirp parameter or a history of a given
trajectory. Advances in this area will also have a significant
impact on the implementation of chirps in synthesis.

7. REFERENCES

[1] Julius O. Smith and Xavier Serra, “PARSHL: A pro-
gram for the analysis/synthesis of inharmonic sounds
based on a sinusoidal representation,” in Int Computer
Music Conf. 1987, Computer Music Association, Also
available as Stanford Music Department Technical Re-
port STAN–M–43.

[2] R. J. McAulay and T. F. Quatieri, “Speech analysis-
synthesis based on a sinusoidal representation,” Tech.
Rep. 693, Lincoln Laboratory, MIT, 1985.

[3] Xavier Serra and Julius O. Smith, “Spectral modeling
synthesis: A sound analysis/synthesis system based on
a deterministic plus stochastic decomposition,” Com-
puter Music Journal, vol. 14, no. 4, pp. 12–24, Winter
1990.

[4] Scott Nathan Levine, Audio Representations for Data
Compression and Compressed Domain Processing,
Ph.D. thesis, Electrical Engineering Dept., Stanford
University (CCRMA), December 1998.

[5] Michael Goodwin, “Matching pursuit with damped
sinusoids,” in ICASSP, 1997.

[6] J. S. Marques and L. B. Almeida, “A background for
sinusoid based representation of voiced speech,” in
ICASSP, 1986.

[7] Aaron S. Master, “Sinusoidal modeling parameter es-
timation via a dynamic channel vocoder model,” in
ICASSP, 2001.

[8] Aaron S. Master, “Nonstationary sinusoidal model
frequency parameter estimation via fresnel inte-
gral analysis,” Tech. Rep., CCRMA, Stanford
University, 2002, Available from http://www-
ccrma.stanford.edu/˜asmaster/.

[9] Yi-Wen Liu and Aaron S. Master, “Phase of a con-
tinuous time linear-frequency chirp signal: Analy-
sis and application,” Tech. Rep., CCRMA, Stan-
ford University, 2002, Available from http://www-
ccrma.stanford.edu/˜asmaster/.

[10] E. Wan, A. Nelson, and Rick Peterson, Speech En-
hancement Assessment Resource (SpEAR) Database,
Oregon Graduate Institute of Science and Technol-
ogy CSLU, Beta Release v1.0, avaliable online at
http://ee.ogi.edu/NSEL/.

V - 659

➡ ➠


