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ABSTRACT

We present an enhanced sinusoidal modeling system that
efficiently parameterizes spectral peaks by linear frequency
chirp rate, in addition to the standard parameters of ampli-
tude, center frequency, and phase. Similar to aconventional
sinusoidal modeling systems, the current system operates
in a frame-by-frame manner, but also efficiently obtains a
chirp parameter estimate for each peak in a given frame.
We demonstrate an application to voice coding where our
model captures most of the significant signal information
in a spectrogram operating at double the current system’s
framerate.

1. INTRODUCTION

In the field of audio signal processing, sinusoidal modeling
is afundamentally important signal representation. It finds
applications in audio coding, speech enhancement, sound
source separation, and pitch tracking. All these applications
benefit from high quality sinusoidal parameters.

In conventional sinusoidal modeling [1, 2], these param-
eters are defined as frequency, amplitude and phase of each
frequency component. Other efforts have focused on non-
sinusoidal parameters such as bandlimited noise [3] or tran-
sients [4].

Efforts have also been made to expand or improve si-
nusoidal parameters. Matching-pursuit [5] seeks to identify
exponentialy decaying envelopes of quasistationary sinu-
soids. Linear frequency chirp rates of frequency compo-
nents have been estimated [6], when constant- or Gaussian-
amplitude time envelopes are present. A dynamic vocoder
model [7] has been used to estimate very accurate sinusoidal
trgjectories within each frame, but at great computational
expense.

We present a new technique that efficiently and robustly
obtains the linear chirp parameter. The current estimation
technique is robust to phase shift, and to time domain am-
plitude modulation.
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2. THEORY

To develop our model, we first consider a simple discrete
time linear frequency chirp signal:
y(n) = exp(jan?). )

where « isthe one-half the chirp rate in radians per sample.
We may write the DFT of the rectangle-windowed signal as

N-1
2

Y(k) = exp(j(an? — 27kn/K)). (2)

n=—=3

where N is the odd-sample zero phase window length and
K isthelength of the optionally zero padded transform. It
may be shown [8] that for sufficiently large a and IV,

T
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where we have applied the midpoint approximation to the
definiteintegral of the analogous continuoustime chirp,

y(t) = elot’.
Considering the above integral, it may be shown [9] that

Ve (w)
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and we see by inspection that this expression becomes zero
when w = 0, indicating a stationary point at the center fre-
guency. When using a Hann window, it may be shown [9]
that:

dyrenn (w) . dYRec(w)  1dYEe(w — wr)
dw N dw 2 dw
1dYR¥e¢(w + wr)
2 dw
= VW)

ICASSP 2003




and the second derivative evaluated at w = 0 becomes

d2yHann w _j ann
T = g o)), @

By choosing K sufficiently large, we may approximate
the second order derivative with a second order difference.
Doing so and solving for a yields

-1

_ -Y'Hann K 2 A2yHann k
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wherewe note that second order differencing operation with
respect to frequency bin k& has been normalized by twice
multiplying by % This expression will serve as the main
part of the chirp parameter estimator.

3. MODEL APPLICATION

We now may consider amore general and practical discrete
time signal model for a given spectral peak:

g(n) = exp(j(an® + fon + 9)), (6)

where « is one-half the chirp rate in radians (increased) per
sample, By is the center frequency in radians per sample,
and ¢ isthe phase offset. The DFT of g(n) is G (k).

To estimate « from G(k), it may be shown [8] that we
may use our estimator in egn. 5, provided that we consider
k corresponding to 3¢ rather than £ = 0. It may also be
shown [9] that the estimator is valid when ¢ # 0.

We may also use the estimator when P order polyno-
mial amplitude modulation occurs in the signal. To prove
that this is valid, we first recall that taking an order 3 or
higher derivative (approximated by differencing) of Y (k)
yields zero. Now, recalling that order P polynomial ampli-
tude modulation in the time domain correspondsto order P
differentiation (approximated by differencing) and multipli-
cation by j in the frequency domain, we see that such AM
cannot influence our estimator.

Although our estimator survivesthese conditions, it can-
not function normally when a: or N isvery small. (Because
wewill treat NV as the fixed frame length of the system, we
may view this as a constraint on «.) The error occurs be-
cause we cannot achieve the spectral resolution needed to
accurately estimate the very large second order derivative
in egn. 4 with a second order difference, barringa 1/« in-
creasein K. The error manifestsitself in a predictable way,
however, with the estimated « value from egn. 5 showing an
imaginary part when in fact the estimate should be purely
real. Thisimaginary part mimicsthe ratio of thereal part to
the correct a value, allowing us to solve the equation

R{a}

z1 + 228{a} &~
o4

)

as a least squares problem to obtain optimal coefficients
1 and z5. We may then substitute these and the real and
imaginary parts of the egn. 5 estimate and solve for « in
cases wheretheinitial estimator’s guessis below our small-
ness threshold of 0.08 radians per N-samplewindow. (This
was found to be reasonable when using zero padding to
K < 5N.) Doing so creates a small-a estimator that is as
accurate for small o asegn. 5isfor larger a. Results show-
ing the estimator applied to arange of a values are shown
infigure 1. Inthat figure, fo = 0, N = 201 and K = 1024.
An arbitrary affine amplitude modulation of 0.5 + 0.001n
was applied as was a phase shift of ¢ = .
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Fig. 1. Results achieved by the small-a and general estima-
tor.

4. SYSTEM OPERATION

The overall structure of our system is similar to conven-
tional sinusoidal modeling. First, each frameis read in to
a buffer, which is FFT'd and then analyzed for peaks. A
parabolais fit to the log of each magnitude peak, yielding
accurate magnitude and frequency estimates. A phase esti-
mateisalso recorded, and is normalized by the chirp param-
eter after the latter is estimated. (Thisis necessary because
of the nonlinear mapping of phase offsets to detected peak
phase for chirp signals.)

Next, we apply the estimator in egns. 5 and 7 as ap-
propriate to each peak, assigning a chirp parameter to each.
When calculating the second order differencein egn. 5, we
use the Y (k) values at the nearest frequency bin & to the
detected peak (and its neighbors k& + 1) in the calculation.
In the future, we may try to use linear or other interpola-
tion of Y (k) to use values corresponding more exactly to
the interpolated peak center frequency of the component.

We leavethetask of frequency trajectory alignment across
frames to future work. We note that since our chirp and
phase parameters are detected with great accuracy, it may
no longer be necessary to align such trajectories. Direct
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synthesis of the detected frequency components via IFFT
or abank of oscillators will be explored as an aternative to
trajectory alignment.

5. RESULTS

We provide two examples of the application of our sys-
tem. For each example, we provide both a spectrogram,
which hints at the capabilities of a conventional SMS sys-
tem, and trajectory plot. The trgjectory plot includes the
center frequency for each detected peak (shown as a bold
dot) and aline showing the linear frequency trajectory esti-
mated by our chirp detector. Because 50% overlap of win-
dows was used in our system, each linear trgjectory is ex-
tended only half way to the adjacent frame. Hence, the tra-
jectories should meet up between frames if our estimator is
accurate. Indeed, this can in general be seen.

We see that most of the information gleaned from the
spectrogram can be observed in our trajectory plot, and we
recall that our system is operating at one half the framerate
of the spectrogram. Hence, we may consider our system
an improvement to conventional SMS in that we have both
reduced the frame rate by a factor of 2 and captured the
essential features of the signal.

In the first example figures, we see the female speech
utterance“you always’ andinin the second examplefigures
the femal e speech utterance “example”’ [10].
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Fig. 2. “You always’ Speech Trajectory Plot.
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Fig. 3. “You always’ Speech Spectrogram.
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Fig. 5. “Exampl€e” Speech Spectrogram.

6. SUMMARY AND FUTURE DIRECTIONS

We have presented a system that obtains linear frequency
chirp parameters efficiently and accurately. The system is
significant because it reduces the frame rate needed to cap-
ture the essential features of input signals, while incurring
little computational expense at the frame level.

Future work will focus on making the chirp parameter
estimation more consistent. We will attempt spectral inter-
polation for the derivative estimatesin egn. 5 and will inves-
tigate combining estimates from multiple chirp estimators
into a more robust estimate.

The task of intra-frame trajectory matching is yet to be
addressed. This could provide for a significant area of ex-
ploration, with trgjectory matching incorporating a confi-
dence measurein the chirp parameter or a history of agiven
trajectory. Advancesin thisareawill also have a significant
impact on the implementation of chirpsin synthesis.
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