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ABSTRACT

This paper describes an extension to existing work on three-
dimensional elliptic Fourier descriptors (see [1]) which en-
ables the efficient parameterization of human pinna shape.
The theory and implementation of the new method are dis-
cussed and examples of pinna shape parameters given. We
describe an application of the method to the estimation of
the acoustic pressure response of human pinnae and discuss
ongoing work into the parameterization of full head shapes.

1. INTRODUCTION

The elliptic Fourier transform (EFT) is a long-established
method for decomposing two-dimensional contours into
Fourier components (see, for example, [2]). Its principle
is to take a two-dimensional contour in xy and to parame-
terize it in terms of a third variable t as x(t) and y(t). These
components are then subjected to Fourier transforms to give
spectra for the contour’s x and y components.

Park and Lee [1] have demonstrated a method by which
the EFT can be extended into three dimensions. They con-
sider a three-dimensional representation of a human body
shape aligned along the z axis and take cross sections for
various values of z. The cross-sectional shapes are trans-
formed with a 2D EFT and the resulting spectra are then
subjected to a second Fourier transform along z.

2. APPLICATION OF EFT TO PINNA SHAPE

Our research is motivated by the desire to parameterize the
shape of the human pinna. While the EFT would seem to
be an appropriate method, the approach of Park and Lee [1]
is ill-suited to this particular class of shapes. The cross sec-
tions taken along any Cartesian axis of a typical pinna mesh,
like that in Figure 1, will almost always consist of multiple
contours which cause rather signficant complexities in the
transform process.

We propose a modification to the work of Park and Lee
which is better suited to our application. Instead of tak-
ing cross-sectional ‘slices’ for the transform inputs, we start
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Fig. 1. Example pinna mesh showing alignment with the
Cartesian axes

with a slice in the xy plane. An incremental rotation about
the y axis then generates each successive slice. This slic-
ing scheme has the advantage of yielding single contours
on each slice for a wide range of human pinna shapes.

3. THE MODIFIED EFT METHOD

The first stage in our modified EFT parameterization is align-
ment. The slicing procedure to follow requires that target
pinna meshes are aligned such that the y axis follows the ap-
proximate line of the ear canal, as shown in Figure 1. Slice
contours can then be obtained using our modified scheme.
The xy plane is intersected with the pinna mesh to yield the
first contour. This process is then repeated with the plane ro-
tated by a set of S different angles θ around the y axis. We
define a rotational step α such that α = 2π/S. This gives
a plane rotation angle θ = 0, α, 2α, . . . , 2π − α and hence
a set of S slice contours. Due to the common shape proper-
ties of the human pinna, it is postulated that the slices will
all contain single contours. Exceptions to this rule may ex-
ist, but observations suggest that significant problems will
be rare. To expedite further processing, each slice is re-
orientated to lie in the xy plane by applying appropriate
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counter-rotations of −θ about the y axis.
Due to the nature of the source mesh data, the points

making up the slice contours will at this stage be irregularly
spaced. They are regularized by means of a simple straight-
line interpolation so that each contour has the same number
of points, T . The contours can then be described by a pair
of functions fx

s [t] and fy
s [t] for the x and y components

respectively, where s is the slice number that produced the
contour, s = 0, 1, 2, . . . , S − 1 and t = 0, 1, 2, . . . , T − 1.

The elliptic Fourier transform is most often used for
closed contours. Such contours are well suited to the Fourier
transform since their x and y components are periodic. In
order to force periodicity upon our slice contours, we set t
to traverse the contour from one end to the other before re-
turning back to its starting point. In other words, we add the
points t = T − 2, T − 3, . . . , 2, 1 to the end of the contour,
meaning that it has a new number of points T ′ = 2(T − 1).
This has the additional effect of making the slice compo-
nents into even functions.

The standard approach of Park and Lee [1] is then fol-
lowed. Let Ax[s, n] and Ay[s, n] be the Fourier coefficients
of fx

s [t] and fy
s [t] respectively. Since fx

s [t] and fy
s [t] are real

and even, the spectra Ax[s, n] and Ay[s, n] will be real and
Hermitian. We perform the transform operations separately
on both fx

s and fy
s ; only the working for fx

s is shown here.
The first stage is to calculate Ax[s, n] using the standard
discrete Fourier transform expression

Ax[s, n] =
T ′−1∑

t=0

fx
s [t] e−jnt/T ′

(1)

for n = 0, 1, 2, . . . , T ′−1. We then take a second trans-
form of Ax[s, n] with respect to s. Let Bx[m,n] represent
the Fourier transforms of Ax[s, n] so that

Bx[m,n] =
S−1∑

s=0

Ax[s, n] e−jms/S (2)

for m = 0, 1, 2, . . . , S − 1.
When performed for both the x and y components, this

method results in a Fourier coefficient set of Bx[m,n] and
By[m,n]. A plot of the low-order values of �{Bx[m,n]}
is shown in Figure 2 as an example; plots of the other pa-
rameters show a similar energy distribution but are omitted
to save space. The example plot shows the parameter region
which contains all the energy.

It is interesting to note some properties of the coeffi-
cients which occur because of the way in which slices are
taken. Given a set of S slices, spanning slice plane rota-
tion angles from 0 to 2π, the contour on slice S/2 will be
the same shape as that on slice 0 but in the opposite direc-
tion. Thus it is useful to consider the slice collection as two
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Fig. 2. Plot of the low-order values of �{Bx[m,n]}

subsets. Let

v = {0, 1, 2, . . . , (S/2) − 1} (3)

w = {(S/2), (S/2) + 1, (S/2) + 2, . . . , S − 1} (4)

There will be close relationships between slices v and
w as follows:

fx
v [t] = −fx

w[−t] (5)

fy
v [t] = fy

w[−t] (6)

In other words, the x component of the second-half slice
contours will be time-reversed and inverted and the y com-
ponent merely inverted. The properties of the Fourier trans-
form are such that the spectra of x and y will be constrained
as follows

Ax[v, n] = −A∗
x[w, n] (7)

Ay[v, n] = −Ay[w, n] (8)

This in turn means that the inputs to the second stage
transforms will have special properties:

• x inputs — half-wave symmetric

• y inputs — double-periodic (the second half of the
input set will be the same as the first)

This means that the second transform spectra Bx will
have zero odd harmonics and By will have zero even har-
monics. These constraints further reduce the number of co-
efficients that are required to fully describe a parameterized
pinna mesh.
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3.1. Reconstruction

An important requirement for our intended application is an
algorithm to provide good-quality reconstructions of pinna
parameters. The reconstruction of the original contours re-
quires only a set of inverse Fourier transforms, and we have
developed a simple algorithm to generate full meshes from
these contours.

The algorithm consists of a method for joining two ad-
jacent slice contours together. This method is then repeated
for each adjacent pair of slices in the set. Given the first pair
of contours f0 and f1, we select a ‘point skip’ value p de-
pending on the density of the mesh that is required. We
then run though the points of f0 joining each point t =
0, p, 2p, . . . to the nearest point on f1. Adjacent lines are
then built into quadrilaterals which make up the mesh. The
points to which lines are joined on f1 are noted in a list J .
This process is illustrated in Figure 3.

f0

f1

reconstructed quadrilateral

t = 0 t = p
t = 2p

Fig. 3. Joining two slices together during reconstruction

The algorithm then moves on to joining f1(t) to f2(t).
The first step is to check that points in the list J are reason-
ably evenly spaced. After several contour pairs have been
joined there is a danger of the situation illustrated in Fig-
ure 4 whereby gaps open up between the points in the list J .
The algorithm checks for these gaps appearing, and any dis-
tance between adjacent points in J that exceeds 2p is filled
in with a new point between the two. Once J has been regu-
larized in this way, the points of f1(t) in J are joined to the
nearest points on f2(t). The algorithm continues as such
until all contours have been joined together. An example of
a mesh reconstructed using this algorithm is given in Fig-
ure 5.

fn

fn+1

fn+2

Fig. 4. Illustration of the problem of drift during reconstruc-
tion

Fig. 5. Example of a reconstructed pinna mesh

4. DISCUSSION

The example parameter set shown in Figure 2 demonstrates
that the method expresses the sample pinna shape in a com-
pact form. In particular, the the second Fourier transform is
effective due to the similarity between adjacent slices of the
pinna shape. This similarity exists because of the relatively
slow variation in the shape of the pinna as a function of θ
and is exploited by the method.

It is thought that a significant proportion of the ‘energy’
contained in the parameter set is due to the pinna’s slices be-
ing open contours. Because of this, the method incorporates
the step of forcing the contours to be closed by traversing
the contour from beginning to end and back to the begin-
ning, as described in Section 3. While this improves the
situation, it still causes a discontinuity in gradient at the end
of the slice which will cause the spectrum to contain more
energy than it otherwise might.

This problem is largely obviated by developments to the
method that we are currently undertaking. Instead of pa-
rameterizing a single pinna shape, we are investigating the
extension of the same parameterization system to handle an
entire human head shape. In this situation, the slice contours
obtained from the source mesh are continuous, improving
the efficiency of the parameterization. The nature of the hu-
man head shape also introduces significant possible savings
due to its near symmetry about the the median plane.

Further ongoing work is dedicated to investigating the
amount of data compression that the parameterization can
offer. Truncating the Fourier transforms at either stage of
the process will reduce the number of parameters at the cost
of shape detail. The resulting shape errors can be quantified
in a variety of ways. We intend to investigate error met-
rics based on geometric shape difference and also pressure
response difference when shapes produced from truncated
parameters are used in acoustic models.
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5. APPLICATIONS

The intended application of our method is the efficient es-
timation of acoustic pressure responses. The shape of the
pinna strongly influences a person’s head-related transfer
functions (HRTFs). These HRTFs are the basis of many
current spatialised sound systems (see, for example [3]), but
are difficult to measure and time-consuming to model nu-
merically. Tao et. al [4] have demonstrated a way of mak-
ing good estimates of human head pressure responses in a
very short time. Their method is based on the parameteriza-
tion of human head shape using surface-spherical harmon-
ics (SSH).

The problem with SSH for the estimation of full HRTFs
is that they cannot easily represent the complex shape of
the pinna. It is our intention to develop a modified system
which replaces SSH with the EFT parameters described in
this paper. It is hoped that this will allow the efficient esti-
mation of both pinna and full head pressure response, and
in turn full HRTFs.

6. CONCLUSION

In this paper we propose a new type of three-dimensional
elliptic Fourier transform. This transform is particularly
well-suited to the shape of human pinnae, and allows an
efficient parameterization of pinna shape. The transform
is distinguished from previous EFT methods by the modi-
fied slicing scheme, which eliminates the problems of mul-
tiple slice contours and takes advantage of the smooth and
slowly-changing nature of the pinna’s shape.

Applications include the estimation of acoustic pressures
for the human pinna based on shape data. We discuss exten-
sions to the method to include head shape for the purpose of
estimating HRTFs.
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