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ABSTRACT

This paper analyzes the performance of the un-
constrained FxLMS algorithm for active noise control
(ANC), where we remove the constraints on the con-
troller that it must be causal and has finite impulse re-
sponse. It is shown in this paper that the unconstrained
FxLMS algorithm always converges to, if stable, the
true optimum filter even if the estimation of the sec-
ondary path is not perfect, and its final Mean Square
Error is independent to the secondary path. More-
over we show that the sufficient and necessary stability
condition for the feed-forward unconstrained FxLMS is
that the maximum phase error of the secondary path
estimation must be within 90°, which is only the neces-
sary condition for the feedback unconstrained FxLMS.
The significance of the analysis on a practical system
is also discussed. Finally we show how the results ob-
tained in this paper can guide us to design a robust
feedback ANC headset.

1. INTRODUCTION

The Filter-x LMS (FXxLMS) algorithm is usually used
in ANC to adapt the coeflicients of the controller [1].
The block diagram of the FxLMS algorithm for ANC
is shown in Figure 1, where x(n) is the reference input,
d(n) is the disturbance signal, e(n) is the residual error,
W (z) is the transfer function of the controller, G(z) is
the plant transfer function of the secondary path and
G(z) is the estimate of G(2). In the feed-forward ANC,
z(n) is from a separate reference source, while in the
feedback ANC, z(n) is synthesized from the feedback
of the error signal e(n).

The FxLMS algorithm requires good estimate of
G(Z), as otherwise the system may become unstable.
Wang and Ren showed in [2] that the sufficient, but
not necessary, condition for stability of the feed-forward
FxLMS is that the maximum phase difference between
G(z) and G(z) must not exceed 90°, and Elliott showed
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Figure 1: The FxLMS algorithm for ANC
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in [1] that this 90° condition is also necessary if the dis-
turbance is pure harmonic. A recent paper [3] tries to
show that the 90° condition is not only sufficient but
also necessary for the feed-forward FxLMS algorithm.
The result is however invalid because that paper im-
plicitly assumed that the disturbance and the reference
are totally linear dependent which is not always true
in practice. All these analysis, in general, are for feed-
forward FxLMS. For the feedback FxLMS, the stability
problem becomes complicated and the analysis is nor-
mally based on numerical methods such as Nyquist plot
[1].

On another front, if we remove the practical con-
straints on the controller that it must be causal and
have finite number of coefficients, both the feed-forward
and feedback FxLMS can be analyzed. Elliott analyzed
the unconstrained optimum ANC controller but not the
FxLMS algorithm. It is shown in this paper that the
unconstrained FxLMS tap-weight, if stable, converges
to the true optimum tap weight even if the estimate of
G(z) is not perfect, and the final Mean Square Error
(MSE) is irrelevant to G(z). Moreover we also show
that the 90° condition mentioned in the previous para-
graph is not only the sufficient but also the necessary
condition for the feed-forward unconstrained FxLMS to
be stable, and is only the necessary stability condition
for the feedback unconstrained FxLMS.

The analysis for the unconstrained FxLMS is very
instructive for understanding the algorithm, which oth-
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erwise could not be easily obtained. The significance
of the analysis for unconstrained FxLMS on practical
system is discussed in this paper. In many applica-
tions, even the unconstrained optimum controller may
approximately be causal and have finite tap length, and
the results in this paper are good references in analyz-
ing such systems. An extreme case is when the distur-
bance is purely harmonic, the unconstrained optimum
filter becomes a causal FIR filter, and the analysis in
this paper can be directly applied. Finally in this pa-
per, we show how the analysis successfully guide us to
construct a robust feedback ANC headset.

2. FEED-FORWARD FXLMS ALGORITHM
The adaptation rule for the FXLMS is known as
w(n+1) = w(n) — pe* (n)i(n), (1)

where p is the adaptation step-size, e(n) = d(n) +
wi(n)r(n), r(n) = g(n) ® x(n), #(n) = g(n) © w(n),
g(n) and g(n) are the impulse responses of G/(z) and
G(z) respectively.

If the algorithm is stable, (1) converges to (see [1])

Woo = — (E[f(n)r"(n)) " E[f(n)d*(n)],  (2)

where W, is called the converged solution which is gen-
erally not equal to the optimum solution wqp¢ unless
G(z) = G(z). Subtracting w, from both side of (1)
and taking the expectation, we can obtain the average
tap-weight error recursive equation as

(L — WE[E (n)r* (n)]]- Elw(n) ~wa].
(3)

It is clear from (3) that the average transient be-
haviour of the FXLMS algorithm is determined by the
eigenvalue spread of E[f(n)r"(n)]. It is not straightfor-
ward, however, to relate the eigenvalues with the plant
model error in which we are interested.

In stead of updating the estimated instantaneous
gradient term at every sample time as shown in (1),
a more accurate estimate is to average over the last
N samples and update the tap coefficient in one step.
This leads to frequency domain approach of the FxLMS
algorithm which is given by [1, Chapter 3]

m(k)}+7 (4)

where {}, denotes that only the causal part of the
IFFT is used, w;(m) is the ith element of w(m), E,, (k)
and R,, (k) are the Fourier Transforms of e(n) and #(n)
for block m respectively.

It has been shown in [4] that the two strategies of
(1) and (4) have similar transient behaviours. Thus

Elw(n+1)—we] =

wi(m 4 1) = w;(m) — pIFFT{E} (k)R

we only need to analyze one of them, whichever is eas-
ier. In this paper, our analysis is mostly based on the
frequency-domain approach.

3. UNCONSTRAINED FXLMS
ALGORITHM

In this section, we remove the constraints that the con-
troller must be causal and have finite impulse response,
and derive the so-called unconstrained FxLMS algo-
rithm.

By assuming w; extend from ¢ = —oo to oo, {}+
can be removed from (4). Taking Fourier Transform
on both sides of (4) gives

Wm+1(k) =Wn (k) .UEm(k) : évn(k)a (5)

where W, (k) is the Fourier Transform of w(n) for block
m7

En(k) = Dy (k) + Wi (k) Ry (K),
Ry (k) = G (k) - Xon(K), (6)
R (k) = G (K) - X, (),

G (k), G (k), X, (k) and D,, (k) are the Fourier Trans-
forms of g(n), g(n), z(n) and d(n) for block m respec-
tively.

On another front, if W(z) has infinite impulse re-
sponse, (2) can be expanded as

S wnel) - breli—0) = —rali), (7
l=—00
where ¢p.(i — 1) = E[f(n — Dr
sides of (7) gives

*(n—1)] and ¢pq(i) =

Taking Fourier Transform on both

q)fr(k') . Woo(k) - _(I)fd(k‘)v (8)

where ®;,.(k) is the cross-power spectrum density be-
tween 7(n) and r(n), and ®zq(k) is the cross-power
spectrum density between 7(n) and d(n). But ®z.(k)
and ®;4(k) can also be obtained by
;. (k) = E[R(k)R" (k)] (©)
ra(k) = E[R(k) D" (K)).
(

Substituting (9) into (8) gives
E[R(k)R" (k)] - Woo (k) = —E[R(K)D"(K)].  (10)

Further substituting (6) into (10), and assuming that
G(k) and G(k) are slow varying and irrelevant to X (k),
we obtain the normal equation of the unconstrained
FxLMS filter as

G(k)G* (k) Puy (k) Woo (k) = —G(k)Ppa(k),  (11)
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where @, (k) = E[| X (k)|?] is the power spectrum den-
sity of x(n), and ®,4(k) = E[X (k)D*(k)] is the cross
power spectrum density between z(n) and d(n).

4. PERFORMANCE ANALYSIS

The converged tap weight and final MSE that the un-
constrained FxLMS filter can eventually achieve are de-
rived in this section, followed by the stability analysis
for the modelling error of the secondary path. Finally
the significance of the analysis on practical systems is
discussed.

4.1. Converged Tap Weight And MSE
If G(k) # 0, (11) becomes

G (k)P (k) Woo (k) = —Dya(k). (12)

Since (12) is independent of G(k), the final tap
weight to which the unconstrained FxLMX converges
must be equal to the true optimum tap weight even if
the estimate of the secondary path is not perfect, i.e.
G(z) # G(2).

Moreover the final MSE of the unconstrained FxLMS
can achieve is given by, according to Figure 1,

E[| B (k)*] = ®aa(k) = |G(k)*|Woo ()|* @ua (k), (13)

where ®44(k) = E[|D(k)|?] is the power spectrum den-
sity of d(n). Again if G(k) # 0, and further assuming
that G(k) and ®,, (k) are not zeros, from (11) and (13),

we have

| Pz (k)|

B[ Es (k)[?] = ®qa(k) By ()

(14)
It is interesting from (14) that E[|Es(k)|?] does not
depend on G(k), implying that even if there exists sec-
ondary path G(Z) in the ANC system, it has no effects
on the final MSE if the tap-weight is unconstrained.

4.2. Stability Analysis

Noting (10), subtracting W, (k) from both sides of (5)
and taking expectation values, and using the indepen-
dent assumption, we obtain the average weight error
behaviour for the unconstrained FxLMS algorithm in
frequency domain which is given by

E[Wa 41 (k) = Woo ()]
= [1 = B[R (R B3 (0))] - EIWon () = W (k)]

= [1 — pG(k)G* (k) - @y (k)] - E[Wyn (k) — Woo (k)]
(15)

It is clear from (15) that, to achieve stability, we
must ensure

1~ HE[G(K)G" (k)] - Puu (k)| < 1. (16)

Solving inequality (16) gives

0<u< A2~Re[é(k)G*(l<:)} ' a7)
|G(R)G*(k)|? - uu(k)

Therefore from (17), providing that u is properly set,
we obtain the necessary and sufficient conditions for
the feed-forward FxLLMS to converge which is given by,

Re[G(k)G* (k)] > 0, (18)
which is equivalent to [0] < 90°, where 6 the phase
difference between G(k) and G(k).

4.3. Practical Systems

In practice, the controller of the ANC system is gener-
ally a causal FIR filter, and cannot control the whole
spectrum of the disturbance as much as the uncon-
strained controller. Thus generally, the FxLMS in prac-
tice has higher final MSE than the unconstrained algo-
rithm. For the practical FxLMS, it is somehow equiva-
lent to have an extra disturbance at the unconstrained
FxLMS input to make it have the same performance
as the practical FxLMS. By noting this, the stability
condition for the practical FxLMS algorithm becomes

Re[G(k)G* (k)] + A(k) > 0, (19)
where A(k) > 0. Therefore at the frequencies where
A(k) > 0, even if the phase error exceeds 90°, the sys-
tem can still be stable. This observation was also im-
plied in [2] which showed that Re[G/(k)G* (k)] > 0 is the
sufficient but not necessary condition for the stability
of the feed-forward FxLMS algorithm, which indirectly
ensures the reliability of (19).

Eqn. (19) can also be used as a criterion for com-
paring different robust FxLMS algorithms, since all ro-
bust FxLMS eventually have stable conditions in form
of (19). The larger the A(k) is, the bigger the stability
margin the algorithm has, but the poorer the distur-
bance reduction performance it achieves. For example,
the leaky FxLMS algorithm [1] introduces a leaky fac-
tor in the adaptation rule, and the weight-constrained
FXLMS algorithm [5] constrains the norm of the tap-
weight. Both approaches achieve robustness by intro-
ducing an equivalent A(k) in the stable condition sim-
ilar to (19), where the one that has larger A(k) for
the same final MSE is better than the other in the
sense of robustness. The analytical derivation of A(k),
however, can not always be obtained, and numerical
methods have to be used.
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5. A ROBUST FEEDBACK ANC HEADSET

In this section we show how the analysis obtained above
are useful to design a real-time robust feedback ANC
headset. The stability analysis of the feedback FxLMS
algorithm is difficult to obtain as mentioned in [1].
Following the same procedure as in section 4.2, how-
ever, at least we can show that the necessary, but not
the sufficient, stability condition for the unconstrained
feedback FXxLMS algorithm is the same as that for its
feed-forward counterpart, which is (18). For practical
feedback FXLMS, though (18) may not be a necessary
condition, violating (18) leads to small stability margin
which again forces the algorithm to converge slowly.
Consequently we should ensure the phase error to be
within 90° for the feedback FxLMS algorithm.

Feedback FxLMS algorithm can be used in the ANC
headset to generate a quiet zone around the human
ear. When the headset’s position is fixed, the transfer
function G(z) varies little and can be well estimated.
Usually G(z) is measured when the headset is put on
the ear, and at this time we can assume G(z) ~ G(z).
When the headset is pulled away from the ear, however,
G(z) changes dynamically. The phase change of the
transfer function due to the headset position variation
is measured as shown in Figure 2. This measured phase
difference is approximately equal to the phase error of
G(z) and G(z) for the case when the headset is away
from the ear, and thus influences the stability of the
headset when it is at this position.

In our experiments, at first an ANC headset was
set up using only digital feedback loop. However the
system always became unstable when the headset was
pulled away from the ear. Plotting the phase change
of the transfer function as shown in Figure 2(a), it was
found that, based on the analysis in this paper, the
instability was due to that the phase errors at some
frequencies exceed 90°. To overcome this problem, an
analog feedback loop, in parallel to the digital one, is
added to the system. This arrangement effectively re-
duced the phase fluctuation of the transfer functions
as shown in Figure 2(b), where phase variations were
limited to be within 90°. Together with other appropri-
ate system design, a robust feedback ANC headset was
then designed, though at some frequencies the phase
errors approach very closely to 90°.

6. CONCLUSION

This paper analyzes the performance of the uncon-
strained FxLMS algorithm for ANC, where both feed-
forward and feedback ANC are considered. We show
that the unconstrained FxLMS filter converges, if sta-
ble, to the true optimum filter even if the estimate of
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Figure 2: Secondary path phase change due to the headset
position variation. (a) Phase change when there is only
digital feedback loop in the ANC; (b) Phase change when
an analog feedback loop is added to the ANC headset.

G(z) is not perfect, and its final MSE is irrelevant to
G(z). More importantly, we show that for feed-forward
unconstrained FxLMS, the sufficient and necessary sta-
bility condition is that the maximum phase error of the
secondary path estimation must be within 90°, which
is however only the necessary condition for the feed-
back unconstrained FxLMS. Finally we illustrate how
the analysis in this paper successfully guides us to set
up a robust feedback ANC headset.
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