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ABSTRACT 
 
In some situations of active noise control, IIR filters are 
more suitable than FIR filters owing to the poles in the 
transfer function. A number of algorithms have been 
derived for applying IIR filters in active noise control 
(ANC), however, most of them use the direct form IIR filter 
structure, which faces the difficulties of checking stability 
and relatively slow convergence speed for noise 
composed of narrow band components with large power 
disparity. To overcome these difficulties along with using 
the direct form IIR filters, a new adaptive algorithm is 
proposed in this  paper, which uses and updates the lattice 
form adaptive IIR filter in an active noise control system. 
The comparison between the proposed algorithm and the 
commonly used filtered-u LMS and filtered-v LMS 
algorithms shows the superiority of the proposed 
algorithm. 

 

1. INTRODUCTION 
 
Although the algorithms using adaptive IIR filters for 
active noise control have been proposed for many years, 
they still have not been widely used in the application of 
the actives noise control system due to the following 
disadvantages. First, IIR filters are not unconditionally 
stable due to the possibility that some poles of the filters 
might move outside of the unit circle during the weights 
update. Second, the existing adaptive algorithms  have a 
lower convergence speed and may converge to a local 
minimum. Therefore, it is recommended that whenever 
possible, adaptive FIR filters should be used [1].  

The adaptive IIR filters used in active noise control 
are usually in the direct form, for example, the filtered-u 
LMS (FULMS) algorithm [2] and filtered-v LMS (FVLMS) 
algorithm [3]. All these adaptive algorithms use the direct 
form IIR filter, hence having the same problems of possible 
instability and slow convergence. The lattice structure is 

an alternative form of a digital filter, which possesses  the 
advantages of inherent stability and greatly reduced 
sensitivity to the eigenvalue spread of the reference signal 
[4]. The idea of using lattice filters in active noise control is 
not new. However, it is usually used as a preprocessor 
followed by a FIR filter [5-6]. This paper will propose a new 
adaptive algorithm for using the lattice form adaptive IIR 
filter in active noise control, which makes full use of the 
othorgonalization property of the lattice structure and 
avoids the problem of slow convergence and possible 
instability while holding the benefits of adaptive IIR filter. 
 

2. THE LATTICE GRADIENT DECENT ALGORITHM 
FOR ANC 

Fig. 1 Tapped state normalized lattice filter for active noise 
control for M=3 

 
Fig. 1 shows the flowgraph of the tapped state normalized 
lattice form IIR filter for active noise control for the case in 
which the filter order M is set to 3. In this figure, the 
primary path transfer function P(z) represents the transfer 
function from the noise source to error sensor, the 
cancellation path transfer function C(z) represents the 
acoustic path from the secondary source to error sensor. 
{ζ(⋅)} is some kind of noise which is statistically 
independent of the reference signal {x(⋅)}. The filter 
parameters are the rotation angles {θ1,…,θM} plus the tap 
parameters {ν0,… νM}. The cascade structure in the lattice 
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filter propagates a forward signal fk(n) and a backward 
signal bk(n) at time n and section number k . By adapting 
{θk} in such a way that | sinθk | < 1, the stability of the 
lattice filter is ensured [4]. 
  The output of the lattice filter is  
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{bk(n)} for k  = M, M-1,…, 1 are obtained by the Schur 
recursion 

1

1

( ) cos sin ( )

( ) sin cos ( 1)
k k k k

k k k k

f n f n

b n b n

θ θ

θ θ
−

−

−
=

−

     
          

     (2) 

where fM(n) = x(n) and b0(n) = f0(n). 
As with the direct form algorithm, the output error 

signal is  
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where W(z) is the transfer function of the lattice filter. The 
parametric derivatives of this error signal are given by 
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Fig. 2 Filtered regressor signals for the tap parameters 
 

The derivative with respect to the tap parameters {νk} is 
straightforward. In the lattice form, there is 
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where Bk(z) is the transfer function of the lattice filter 
corresponding to the kth backward signal. The signals 
obtained from Eq. (6) are called filtered regressor signals as 
they are formed by filtering the input with the cancellation 
path transfer function and the lattice filter.  The signals can 
be obtained with an auxiliary lattice filter, as shown in Fig. 
2 for the case M = 3, where the filtered regressor signals 
for the tap parameters {νk} is {bck(n)}. The instantaneous 
estimate of the gradient signal of the cost function E[e2(n)] 
corresponding to the tap parameter νk is  

( )
( ) 2 ( ) 2 ( ) ( )

k ck

k

e n
n e n e n b n

υ
υ

∂
∇ = =

∂
           (7) 

Obtaining derivative signals with respect to the 
rotation angles {θk} is more complicated. Via Eq. (3) and (5), 
there is  
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which requires obtaining the sensitivity function ∂Bl(z) /∂θk.  
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By applying differential operator ∂/∂θk to the z-transform of 
Eq. (2), we have 
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 if k  ≠ l  (9) 
And 

   

 , 1  ,

 ,  , 1

1

( ) ( )cos sin

( ) ( )sin cos

sin cos ( )

cos sin ( )

k l k ll l

k l k ll l

l l l

l l l

F z F z

B z zB z

F z

zB z

θ θ

θ θ

θ θ

θ θ

θ θ

θ θ

−

−

−

−
=

− −
+

−

    
        

   
      

  

 if k = l  (10) 
By using  
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For k = l, there is  
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Because FM(z) = 1 and B0(z) = F0(z) for all {θk}, the 
boundary conditions for completing the recursion are 
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For illustration purposes, Fig. 3 shows the filtered 
regressor signal corresponding to the rotation parameter θ2 
for the filter order of M = 3.  

Fig. 3 Filtered regressor signal for the rotation parameter 
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The instantaneous estimate of the gradient signal of the 
cost function E[e2(n)] corresponding to the rotation 
parameter θk is  
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An overall algorithm listing is given in Table I. Note that 
the “Test” step in the algorithm not only guarantees the 
stability of the adaptive process but also ensures the 
uniqueness of the mapping from the transfer function 
space to the parameter space.9 

 
3. THE SIMPLIFIED GRADIENT LATTICE ALGORITHM 

FOR ANC 
 

It should be noted that M additional lattice filters are 
required to obtain the filtered regressor signals {−∇θk(n)} 
corresponding to the rotation parameters. Thus the 
complexity is of the order M2, both for computation and 
storage. Considering that the normally used direct form IIR 
filters such as filtered-u [2] algorithm and simplified 
filtered-v algorithm [3] required only order M computation 
and storage, the increased complexity of the lattice form is 
an obvious disadvantage. A simplified gradient lattice 
algorithm with a computation complexity order of M is 
described below. The derivation is quite complex, and the 
details are omitted for brevity. However a similar deviation 
of adaptive lattice algorithm that used in system 
identification can be found in reference [4], which does not 
take into account the cancellation path as in an ANC 
system.  

For illustration purposes, Fig. 3 shows the filtered 
regressor signal corresponding to the rotation parameter θ2 
for the filter order of M = 3. 

Fig. 4 Generation of filtered regressor signals in simplified 
gradient algorithm 

 
The resulting algorithm would appear as  
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4. SIMULATIONS 

 
In this section, several illustrative results are presented on 
comparisons between the proposed algorithm and 
commonly used FULMS algorithm [2] and FVLMS 
algorithm [3]. Only the simplified gradient lattice algorithm 
will be used for simulations, which will be called LFRLMS 
(Lattice Filtered Reference LMS) algorithm in the following 
context. All the simulations were  conducted by using the 
acoustic transfer functions in a single input and output 
active noise control system measured in the anechoic room 
with a sampling rate of 8000Hz. Fig. 5 shows a schematic 
diagram of the system, where two identical loudspeakers 
were placed 20cm from each other, one acted as the noise 
source and the other acted as the control source. An error 
microphone was placed 1.3m away from the center of two 
loudspeakers. The impulse responses corresponding to 
the primary path and the cancellation path are shown in 
Fig. 6. In all the simulations the filter order was 64 and the 
stepsize parameters of the adaptive algorithms were 
adjusted to the extent that any increase to the parameter 
would cause the control process unstable. 

Fig.5 Schematic diagram of the simulation system 

Fig. 6 Impulse responses used for primary and secondary 
path with (a)primary path and (b)secondary path 

 
The white Gaussian noise generated by the computer 

was used as the noise source first, and the convergence 
speed of the three algorithms are shown in Fig. 7. It can be 
seen that there is not dramatic difference among these 
three algorithms as far as for attenuating white noise. 
FVLMS algorithm and FULMS algorithm perform almost 
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the same and proposed LFRLMS algorithm gives slightly 
better performance than the other two algorithms. 
Theoretically the convergence performance of the lattice 
form and direct form IIR filters should be similar for the 
noise signal with quite flat power spectrum. However, 
because lattice form adaptive IIR filters are more stable, the 
convergence coefficient may be set a little larger, resulting 
in faster convergence speed. 

In an actual ANC system, the noise signal to be 
controlled sometimes contains narrow band components 
with large power disparity such as fan noise and babble 
noise. This leads to a great obstacle for normal active 
control strategy because the convergence rate of normal 
LMS algorithm decreases much with the large eigenvalue 
spread of input autocorrelation matrix, which is always 
caused by great power disparity of the input signal [7]. To 
test the efficiency of different algorithms for the 
controlling of more “real” noise, the summation of 100 
sinusoid signals with random frequency between 0Hz and 
3000Hz were used as the noise for the simulations and all 
the sinusoid components have random amplitudes 
between 0 and 0.5 and random initialization phases 
between 0 and 360 degrees. The learning curves shown in 
Fig. 8-9 were obtained from an ensemble of 20 trials. 
Comparing Fig. 8 with Fig. 7, it can be seen that the 
convergence rate of LFRLMS algorithms only decrease 
slightly while both FVLMS and FULMS algorithm 
converge much slower than that for controlling white noise 
signal; and from the learning curve of 50,000 iterations in 
Fig. 9, it can be seen that LFRLMS algorithm converges on 
a level approximately 2dB below the other two algorithms.  

Fig. 7 Comparisons between different algorithms with (a) 
LFRLMS algorithm (b) FULMS algorithm and (c) FVLMS 

algorithm 
 

5. CONCLUSIONS 
 

In this paper, the gradient IIR lattice algorithms for 
ANC were proposed. Then the simplified gradient IIR 
lattice algorithm was tested by using the measured transfer 
functions from an active noise control system. The 
simulation results demonstrated the proposed lattice form 
adaptive IIR filtering algorithm not only converges faster 
than the commonly used FULMS and FVLMS algorithms 
when the noise source consists of sinusoid components 

with wide power disparity, but also converges to a smaller 
mean squared error. It also showed that the proposed 
algorithm is far less sensitive to the cancellation path 
modeling error, which possibly results in a more robust 
system in practice. Theoretical analysis of the stability of 
the proposed algorithm and the implementation of the 
algorithm in a real time DSP ANC system are under-going. 

Figure 8 Learning curves for different algorithms of 5,000 
iterations with noise source of large power disparity. (a) 

LFRLMS algorithm (b) FULMS algorithm and (c) FVLMS 
algorithm 

Figure 9 Learning curves for different algorithms of 50,000 
iterations with noise source of large power disparity. (a) 

LFRLMS algorithm (b) FULMS algorithm and (c) FVLMS 
algorithm 
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