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ABSTRACT

In some situations of active noise control, IIR filters are
more suitable than FIR filters owing to the poles in the
transfer function. A number of agorithms have been
derived for applying IIR filters in active noise control
(ANC), however, most of them use the direct form IR filter
structure, which faces the difficulties of checking stability
and relatively slow convergence speed for noise
composed of narrow band components with large power
disparity. To overcome these difficulties along with using
the direct form IIR filters, a new alaptive agorithm is
proposed in this paper, which uses and updates the lattice
form adaptive IIR filter in an active noise control system.
The comparison between the proposed algorithm and the
commonly used filtered-u LMS and filtered-v LMS
algorithnms shows the superiority of the proposed
dgorithm.

1. INTRODUCTION

Although the algorithms using adaptive IIR filters for
active noise control have been proposed for many years,
they still have not been widely used in the application of
the actives noise control system due to the following
disadvantages. First, IR filters are not unconditionally
stable due to the possibility that some poles of the filters
might move outside of the unit circle during the weights
update. Second, the existing adaptive algorithms have a
lower convergence speed and may converge to a local
minimum. Therefore, it is recommended that whenever
possible, adaptive FIR filters should be used [1].

The adaptive IIR filters used in active noise control
are usually in the drect form for example, the filtered-u
LMS (FULMS) algorithm[2] and filtered-v LMS FVLMS
algorithm[3]. All these adaptive algorithms use the direct
form IR filter, hence having the same problems of possible
instability and slow convergence. The lattice structure is
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an alternative form of a digital filter, which possesses the
advantages of inherent stability and greatly reduced
sensitivity to the eigenval ue spread of the reference signal
[4]. Theidea of using latticefiltersin active noise control is
not new. However, it is usually used as a preprocessor
followed by aFIR filter [5-6]. This paper will propose a new
adaptive algorithm for using the lattice form adaptive IR
filter in active noise control, which makes full use of the
othorgonalization property of the lattice structure and
avoids the problem of slow convergence and possible
instability while holding the benefits of adaptive I IR filter.

2. THE LATTICE GRADIENT DECENT ALGORITHM
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Fig. 1 Tapped state normalized lattice filter for active noise
control for M=3

Fig. 1 shows the flowgraph of the tapped state normalized
lattice form IR filter for active noise control for the casein
which the filter order M is set to 3. In this figure, the
primary path transfer function P(2) represents the transfer
function from the noise source to error sensor, the
cancellation path transfer function C(2) represents the
acoustic path from the secondary source to error sensor.
{Z®} is some kind of noise which is dtatistically
independent of the reference signal {x(3}. The filter
parameters are the rotation angles {qs,....qu} plus the tap
parameters{ny, ... ny}. The cascade structure in the lattice
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filter propagates a forward signal fi(n) and a backward
signal by(n) at time n and section number k. By adapting
{q} insuch away that | sing, | < 1, the stability of the
latticefilter isensured [4].

The output of the latticefilter is

g
y(n) =a b (nu, @
k=0
{bk(n)} for k = M, M-1,.., 1 are obtained by the Schur

recursion
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wherefy,(n) = x(n) and by(n) = f(n).
As with the direct form algorithm, the output error

signalis
e(n) = p(n)+ s(n)+z(n) -
=[P(2) +W(z)C( 2]x(n) +z (n)

whereW(2) is the transfer function of the lattice filter. The
parametric derivatives of this error signal are given by
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Fig. 2 Filtered regressor signals for the tap parameters

The derivative with respect to the tap parameters {n} is
straightforward. In the lattice form, thereis

W(2 =84 u,B,(2 ©)
so that
e(n)
= BEC@XM ©)

where By(2) is the transfer function of the lattice filter

corresponding to the kth backward signal. The signals
obtained from Eq. (6) are called filtered regressor signals as
they are formed by filtering the input with the cancellation
path transfer function and the latticefilter. Thesignalscan
be obtained with an auxiliary lattice filter, as shown in Fig.

2 for the case M = 3, where the filtered regressor signals
for the tap parameters {n,} is{b.(n)}. The instantaneous
estimate of the gradient signal of the cost function E[€(n)]
corresponding to the tap parameter n, is

fle(n)

k

N, ()= 2e(n) = 2e(n)b, (n) (7

Obtaining derivative signals with respect to the
rotationangles{q} ismore complicated. ViaEg. (3) and (5),
thereis
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By applying differential operator /9gxto the z-transform of
Eq. (2), Wehave
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For k=1, thereis
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Because Fu(@) = 1 and Bo(2) = Fdo2) for al {g«}, the
boundary conditions for completing the recursion are
F.u(2=0, B (2)=F (2 (13
For illustration purposes, Fig. 3 shows the filtered
regressor signal corresponding to the rotation parameter g,
for thefilter order of M = 3.
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Fig. 3 Filtered regressor signal for the rotation parameter
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The instantaneous estimate of the gradient signal of the
cost function E[e’(n)] corresponding to the rotation
parameter g is

N (= 2e(0) 2

= 2¢e(n)b,, (n) (14)
a.

An overal algorithm listing is given in Table I. Note that
the “Test” step in the agorithm not only guarantees the
stability of the adaptive process but also ensures the
uniqueness of the mapping from the transfer function
space to the parameter space.’

3. THE SMPLIFIED GRADIENT LATTICE ALGORITHM
FOR ANC

It should be noted that M additional lattice filters are
required to obtain the filtered regressor signals {- N (n)}
corresponding to the rotation parameters. Thus the
complexity is of the order M? both for computation and
storage. Considering that the normally used direct form IR
filters such as filteredu [2] algorithm and simplified
filteredrv algorithm[3] required only order M computation
and storage, the increased complexity of the lattice form is
an obvious disadvantage. A simplified gradient lattice
algorithm with a computation complexity order of M is
described below. The derivation is quite complex, and the
details are omitted for brevity. However asimilar deviation
of adaptive lattice agorithm that used in system
identification can be found in reference [4], which does not
take into account the cancellation path as in an ANC
system.

For illustration purposes, Fig. 3 shows the filtered
regressor signal corresponding to the rotation parameter g,

for thefilter order of M = 3.
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Fig. 4 Generation of filtered regressor signalsin simplified
gradient algorithm

The resulting algorithm would appear as

v, (n+1) =v,(n) - me(n)>B, (z)C(2)x(n), k=0.1,..,.M
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N
g =Qcosq, g, =1 (16)

1=k +1

where

4. SMULATIONS

In this section, several illustrative results are presented on
comparisons between the proposed algorithm and
commonly used FULMS agorithm [2] and FVLMS
agorithm[3]. Only the simplified gradient lattice algorithm
will be used for simulations, which will be called LFRLMS
(Lattice Filtered Reference LMS) algorithm in the following
context. All the simulations were conducted by using the
acoustic transfer functions in a single input and output
active noise control system measured in the anechoic room
with a sampling rate of 8000Hz. Fig. 5 shows a schematic
diagram of the system, where two identical loudspeakers
were placed 20cm from each other, one acted as the noise
source and the other acted as the control source. An error
microphone was placed 1.3m away from the center of two
loudspeakers. The impulse responses corresponding to
the primary path and the cancellation path are shown in
Fig. 6. In al the simulations the filter order was 64 and the
stepsize parameters of the adaptive algorithms were
adjusted to the extent that any increase to the parameter

would causethe control process unstable.
noise source

20cm

130cm  —————s{ )

error microphone

control source

Fig.5 Schematic diagram of the simulation system

20 20 60 80
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Fig. 6 Impulse responses used for primary and secondary
path with (a)primary path and (b)secondary path

The white Gaussian noise generated by the computer
was used as the noise source first, and the convergence
speed of the three algorithms are shown in Fig. 7. It can be
seen that there is not dramatic difference among these
three algorithms as far as for attenuating white noise.
FVLMS dgorithm and FULMS agorithm perform almost
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the same and proposed LFRLMS agorithm gives dlightly
better performance than the other two agorithms.
Theoretically the convergence performance of the lattice
form and direct form IIR filters should be similar for the
noise signal with quite flat power spectrum. However,

because lattice form adaptive | IR filters are more stable, the
convergence coefficient may be set alittle larger, resulting
infaster convergence speed.

In an actual ANC system, the noise signal to be
controlled sometimes contains narrow band components
with large power disparity such as fan noise and babble
noise. This leads to a great obstacle for normal active
control strategy because the convergence rate of normal
LMS agorithm decreases much with the large eigenvalue
spread of input autocorrelation matrix, which is aways
caused by great power disparity of the input signal [7]. To
test the efficiency of different algorithms for the
controlling of more “ rea” noise, the summation of 100
sinusoid signals with random frequency between OHz and
3000Hz were used as the noise for the simulations and all
the sinusoid components have random amplitudes
between 0 and 0.5 and random initialization phases
between 0 and 360 degrees. The learning curves shown in
Fig. 89 were obtained from an ensemble of 20 trials.
Comparing Fig. 8 with Fig. 7, it can be seen that the
convergence rate of LFRLMS algorithms only decrease
dightly while both FVLMS and FULMS agorithm
converge much slower than that for controlling white noise
signal; and from the learning curve of 50,000 iterations in
Fig. 9, it can be seen that LFRLMS a gorithm converges on
alevel approximately 2dB below the other two a gorithms.
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Fig. 7 Comparisons between different algorithms with (a)

LFRLMSalgorithm (b) FULM S algorithm and (c) FVLMS
algorithm

5. CONCLUSIONS

In this paper, the gradient IIR lattice algorithms for
ANC were proposed. Then the simplified gradient 1IR
|attice algorithm was tested by using the measured transfer
functions from an active noise control system. The
simulation results demonstrated the proposed lattice form
adaptive IR filtering algorithm not only converges faster
than the commonly used FULMS and FVLMS algorithms
when the noise source consists of sinusoid components

with wide power disparity, but also converges to a smaller
mean squared error. It also showed that the proposed
algorithm is far less sensitive to the cancellation path
modeling error, which possibly results in a more robust
system in practice. Theoretical analysis of the stability of
the proposed algorithm and the implementation of the
algorithm in areal time DSP ANC system are under-going.
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Figure 8 Learning curvesfor different algorithms of 5,000
iterations with noise source of large power disparity. (a)
LFRLMS algorithm (b) FULM S dgorithm and (c) FVLMS

agorithm

Normalized MSE

Figure 9 Learning curves for different algorithms of 50,000
iterations with noise source of large power disparity. (a)
LFRLMS agorithm (b) FULM S dgorithm and (¢) FVLMS
agorithm
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