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ABSTRACT

The increasing amount of music being stored in digital formats
calls for increasingly more creative methods for music informa-
tion retrieval. One subset of music retrieval methods relies on
storing a melody in a pitch contour representation. Most often,
this contour information is generated either from symbolic format
(MIDI) or from raw audio after a pitch transcription step. In this
paper, we propose a method of extracting pitch contour informa-
tion from musical audio without an intermediate transcription step
by combining a musically-tuned constant Q transform with cross-
correlation. When tested on a database of 520 monophonic music
recordings, our method generates pitch contours from raw audio
data with up to 98% accuracy.

1. INTRODUCTION

As an increasing amount of information, including musical record-
ings, is made available in digital formats, it becomes increasingly
important to access that information in a timely and sensible fash-
ion. An analogy to searching text-based collections illustrates the
problems inherent in searching a musical database. If a user is
interested in “Beethoven’s Fifth Symphony,” he can generate a
World Wide Web search for that text string and locate informa-
tion likely to interest him, that is, a group of documents containing
those keywords. Now suppose the user wishes to search a library
of audio files for the same piece. He is more likely to recall the
characteristic “Da-da-da-dum” of the opening measures, shown in
Figure 1, than the title or composer of the piece. However, there
is no analogous way to access this information directly from most
audio file formats. Some new mechanism is required in order to
make such an obviously mnemonic description of the contents of
music files accessible by the user; this is the heart of the query-by-
melody problem which our estimator addresses.

The motivation to estimate pitch contour from raw audio de-
rives from the need for content-based access to archives of dig-
itized music. One of the greatest problems in searching such a
database by melodic content is that there are many equivalent,
or invariant, methods of representing a given melody as far as a
listener is concerned, such as in different keys. Thus, it is de-
sirable for a representation of melody to ignore such invariances
when comparing two melodies. A second problem with a music
database accessed by content is that users will provide the system
with a query which contains some degree of error, for example, by
singing a query badly.

One of the primary ways in which these melody matching
problems are addressed by query-by-melody systems is to con-

Fig. 1. The opening theme of Beethoven’s 5th Symphony

vert the query and database melodies to a pitch contour represen-
tation [1]. The pitch interval contour is found by simply calculat-
ing the number of pitch steps from one note to the next; for the
Beethoven example in Figure 1, this contour would be “X 0 0 -4
+2 0 0 -3.” This has the advantage of making all key transcriptions
of the same melody equivalent and of reducing the effect of user
errors in pitch production. User errors can be further minimized
by the use of generalized contours which fold the exact pitch steps
into broader categories, such as {Up, Down, Same}, illustrated in
this example as, “X S S D U S S D.” Unfortunately, the degree
of possible melody confusion also increases with coarser contour
representations.

Much of the seminal work in melody-level music information
retrieval (MIR) utilizes pitch contours during processing. For ex-
ample, McNab, et al., [1] extract contour representations of melody
information both from queries to the system and the contents of
their musical database. Using dynamic programming, they com-
pare pairs of contours to determine which melodies are most likely
to match. However, one common problem with such a system is
that employing a pitch contour representation requires either that
the contents of the database be stored in a structured audio for-
mat such as MIDI or that the music first be transcribed from a raw
audio to MIDI before pitch contour is computed. The ubiquitous
nature of music in the MPEG Layer 3 encoding on the World Wide
Web today illustrates the need to address finding melodies in audio
files that that contain no strictly musical information. Additionally,
the conversion of music from a format like MPEG Layer 3 to one
like MIDI is not a solved problem. Though research on tracking
pitch in polyphonic music recordings is ongoing [2, 3], at present
no method is completely successful.

The goal of this paper is to describe a method for estimating
pitch contour directly from raw audio without requiring that ad-
ditional musical information be attached to the audio or requiring
a definitive pitch transcription step. Such a calculation could be
used as a pre-processing step for a melody-level MIR system op-
erating on raw audio data [4]. Section 2 will describe our proposed
method for the estimation of pitch contour from raw audio. Eval-
uation of our system on a test database of raw audio is discussed
in Section 3. Results and conclusions are presented in Sections 4
and 5, respectively.
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2. ESTIMATION OF PITCH CONTOUR

The estimation of pitch interval contour from raw audio data is
a multi-step process designed to overcome two problems associ-
ated with musical data. The first problem is that musical pitch
in the Western tonal scale is logarithmic. 1 The second difficulty
is that we are interested not in finding that we have moved from
one specific pitch to another (for example, from C4 to G4), but
that we have moved over a given pitch interval (in this case, +5
pitch steps.) We desire to do so without requiring an additional
transcription step (e.g., identifying C4 and G4) before making the
pitch interval determination to avoid introducing error into the sys-
tem via that intermediate step.

In order to solve the problem of the logarithmic nature of pitch,
we first apply the constant Q transform described by Brown [5].
To approach the problem of determining pitch step from this spec-
tral data rather than from the results of transcription, we utilize
cross-correlation, as described in Section 2.2. The generalization
of exact pitch interval contour to other contour classes is discussed
in Section 2.3.

2.1. Constant Q Transform

The first step in the estimation of pitch interval contour from raw
audio is to produce a windowed musical spectrum of that data.
This is done using a musically tuned constant Q transform (CQT)
defined by Brown [5] as:

X[k] =
1

Nk

Nk−1
∑

n=0

Wk[n]x[n]e
−j2πQn

Nk

where Q = 1/(1 − q) ≈ 34 has been selected to provide the
appropriate scaling for music. (q = 24

√
2 is a quarter-tone.) The

window width, Nk, is selected to set the center frequencies of the
CQT filters to the pitches of the musical scale. In this case,

Nk =

⌊

FsQ

qkfmin

⌋

where fmin is the minimal center frequency that we are interested
in computing, in this case, fmin = C2 ≈ 65.41 Hz. We can then
define Wk[n] as the window to use for each value of k. In our
implementation, Wk[n] is a Hamming window of length Nk.

Calculating the CQT at each time frame provides us with a
musical spectrum of the signal, in which every other bin corre-
sponds to one note of the musical scale. An example of this spec-
trum for the song Three Blind Mice is shown in Figure 2. Now,
we have a collection of bins which are equally spaced in a musi-
cal sense. At this point, we could, if we desired, estimate the note
which is sounding at each instance in time, for example, by select-
ing the maximally valued frequency bin. However, we choose to
process the data further before firmly defining the results of the es-
timator, using the relationship between the bins to directly estimate
pitch contour.

2.2. Cross-Correlation

The second step in the estimation of pitch interval contour from
raw audio is to calculate the cross-correlation of the absolute value

1In the Western tonal scale (hereafter, the musical scale), moving up an
octave doubles the pitch of a note. The series of twelve pitches within an
octave is divided into 12 equal logarithmic steps (semi-tones).
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Fig. 2. From top to bottom: Audio waveform, constant Q trans-
form, pitch interval contour, maximal pitch interval contour

of the CQT between the current and previous frames. First, we
drop all the values of the CQT that fall between two notes in the
scale, leaving us with only the bins that represent the frequency of
some note on the scale. Next, we calculate the cross-correlation
of these reduced CQTs. This can be expressed by the following
equation:

(f ? g)n =
∑

T−1

k=0
f [k]g[n + k]

=
∑

T−1

k=0
|Xτ−1[k]||Xτ [n + k]|

where Xτ [k] denotes the CQT of x at time τ .
The nature of a musical audio signal under the CQT is to pro-

duce a series of pulses (over background noise) at the fundamental
and harmonic frequencies of the sounding note (as shown in Fig-
ure 2.) The result of correlating these pulse trains is to determine at
what offset the best alignment between frames occurs. The value
of the cross-correlation, (f ? g), at n can be taken as the relative
likelihood that n is the pitch change for that frame; it can be shown
that this value is maximized when n is equal to the pitch interval
between two notes. At this stage, we can use the cross-correlation
output as a feature for MIR without providing a definitive estimate
of the pitch contour; for example, we can take the value of the
cross-correlation at each value of n ∈ [−11, 11] (representing any
change up to an octave.) We can also estimate the most likely pitch
change for each frame by finding the value of n for which (f ?g) is
maximized. Thus, if the maximum of the cross-correlation occurs
when n = −5, then the estimated pitch interval at that frame is
−5. This is shown at the bottom of Figure 2.

2.3. Generalized Contour

While pitch interval contour exactly describes the path a melody
takes during the course of a song, that accuracy may harbor errors
in the melody when it is used as a query to a musical database.
Therefore, we wish to be able to define other generalized classes
of melodic contour. Two common examples of such classes are
{Up, Down, Same} (C3 contour) and {Large step up, Large step
down, Small step up, Small step down, Same} (C5 contour) [6].
Again, we will create this estimate without a definitive transcrip-
tion step or defining the pitch interval contour of the melody prior
to estimating the generalized contour.
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Fig. 4. Examples of maximal generalized contour estimation

Each of the methods which we have tested for the produc-
tion of generalized contours begins with the output of the cross-
correlation step described in the previous section. In the follow-
ing paragraph, we will assume that we are estimating C3 contour.
First, the values of the cross-correlation at each time frame are
grouped into logical sets based on the type of generalized con-
tour to be calculated. For this example, all cross-correlation values
are grouped according to {n < 0, n = 0, n > 0}. Next, sev-
eral methods were investigated for the combination of the values
in those sets into a final value for the generalized contour at that
time frame. The tested methods included taking the mean, product,
sum, and maximum of the values in each set. In empirical testing
on several songs from the evaluation database, it was found that
the maximum produced the best results for estimating generalized
contour. Several examples of generalized contour and maximal
contour estimates for different classes are given in Figures 3 and 4
where C3 and C5 contour are defined as above, and C23 contour
is defined as exact interval contour within [−11, 11] pitch steps.

3. EVALUATION

We evaluate the performance of our pitch contour estimator by
comparing the maximal contour estimate with a ground truth con-
tour extracted from our test database. The system is evaluated on
a database of monophonic music recordings developed by the au-
thors for melody-based MIR [4]; this is described in Section 3.1.
The method of evaluation is then detailed in Section 3.2. The re-
sults of this evaluation are discussed in Section 4.

3.1. Database

The database on which this contour estimator is tested consists
of 520 recordings created for the purpose of testing a query-by-
melody database system. These recordings are of monophonic
melodies drawn from a collection of children’s songs, such as
Three Blind Mice, and Christmas carols, such as Jingle Bells. A
smaller subset of 70 songs was played several times by either an
amateur or a trained pianist. Each rendition of the melody was
recorded several times in different instrumental voices.

The audio data was collected from a Yamaha keyboard. It was
captured by computer at a sampling rate of 22050 Hz using mono
audio input and stored as WAV files. This introduced additional
complexity to the data set, since it added varying amounts of noise
to each recording. At the same time, the corresponding MIDI data
was collected from the keyboard memory to act as label data for
the music. Since we have identified a transcription step from audio
to MIDI as a potential problem in acquiring melodic contour, we
must note that the MIDI data is only used in the evaluation of the
estimator, not during its calculation.

3.2. Method

Our pitch contour estimator was evaluated by comparing maximal
contour estimates from the raw audio data to ground truth con-
tours extracted from the corresponding MIDI data. First, we will
describe the creation of the ground truth vector, then the compari-
son between it and the contour estimate.

Each audio file in the database has an associated MIDI file
which was created at the time of its recording. The pitches which
occur in a song, pi, and their onset and offset times, ton

i and toff
i ,

can all be easily extracted from the MIDI data. (i ∈ [1, N ] and
N is the number of notes in the melody.) Then, we can simply
subtract the MIDI number of the previous note, pi−1, from each
note in the melody, pi. This provides us with the C23 contour of
the melody line, c23

i , for i ∈ [2, N ], and a time stamp for each note
change (the start time of the next note, ton

i .) The equivalent C3 and
C5 contours can then be computed by classifying according to the
value of the C23 contour.

The remaining problem is that the maximal contour estimates
are calculated once every sample period, but note onset data occurs
only once per note in a MIDI representation. To accommodate this,
we will expand the series of pitch contours and time stamps into
a ground truth vector. We use the known sample period, T , of the
contour estimator to find the sample number for a given note onset
time. The ground truth vector is defined (for C23 contour) as:

g[n] =

{

c23

i , n = |ton
i /T |R, for i ∈ [2, N ]

0, otherwise

where |x|R stands for rounding. The equivalent vector for C3 con-
tour can be defined by replacing c23

i with sgn(c23

i ) and so on. Ex-
amples of the ground truth vectors for Three Blind Mice are shown
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Fig. 5. Examples of contour ground truth vectors

Contour Distance Mean Std Min Max
C3 Edit 7.05% 2.90% 0.59% 16.71%
C3 Edit ±1 1.92% 2.30% 0.00% 12.09%
C3 Euclidean 6.05 1.47 1.41 10.25
C23 Edit 7.11% 2.91% 0.59% 16.71%
C23 Edit ±1 2.04% 2.34% 0.00% 12.36%
C23 Euclidean 25.23 8.20 6.93 54.09

Table 1. Error rates for maximal contour estimators

in Figure 5. We now evaluate our method by applying edit and
Euclidean distance measures our maximal contour estimates and
the corresponding ground truth vectors.

4. RESULTS

In this section, we examine the results of comparing our maximal
contour estimates and the ground truth vectors for each song in
our database for both C3 and C23 contour. A summary of the re-
sults can be seen in Table 1. In the table, edit distance determines
whether the contour values at each time frame match and edit dis-
tance ±1 determines if a matching value can be found within one
additional time sample in either direction. Edit distances have been
normalized by the length of each song. Euclidean distance is de-
fined in the usual way.

The edit distance results show good performance for our con-
tour estimator. For strict edit distance, the contour estimator shows
an error rate of 7 ± 2.9% for both types of contour. When the
edit distance ±1 is used, the mean error drops further to about
2 ± 2.3% for both contour types. The difference in the mean val-
ues is likely to be found in registration errors created by resam-
pling the audio signal versus converting time directly from MIDI
data to the sample domain. The reason for the similarity in the
standard deviations will be addressed shortly. A comparison of
the Euclidean distance measures shows the ability of the C3 con-
tour to subsume errors in melody comparisons which may be more
apparent in finely grained representations like the C23 contour.

Two primary types of errors were observed during the evalua-
tion process. One problem is that when there is silence in the piece

of music (as for the period from 16–20 seconds in Three Blind
Mice), many spurious contour estimates are generated. Since there
is no clear musical information here, the calculation of the contour
of the noise spectrum generates many incorrect values. This im-
plies that there are many errors which cannot be corrected simply
by widening our temporal field of view, as illustrated by the two
edit distance measures above. These errors should be reducible by
pairing the estimator with a music/silence detector. A second ob-
vious problem occurs when a note is not immediately preceded by
another note (as for the first note in a piece or for notes occurring
after long pauses); there is an ambiguity as to what the pitch in-
terval might be. Again, music/silence detection might allow us to
reduce errors of this nature.

5. CONCLUSIONS

In this paper, we have presented a new method for extracting pitch
contour information directly from musical audio. We have shown
that this method is capable of successfully extracting pitch con-
tour information from monophonic audio in most cases, and when
paired with a music/silence detector could be even more success-
ful. It would be simple to apply this estimator to a piece of mono-
phonic audio and use the result as a precursor to dynamic program-
ming in a music retrieval system such as is described in Section 1.
It would also be valuable to test this system upon polyphonic au-
dio, to determine if it can provide useful melodic information in
that context (as opposed to this monophonic context, where the
desired melody is clearly shown in the signal.)

Our primary research focus is to examine further uses of this
method outside of a symbolic music representation context. If
it proves capable of representing information about the multiple
voices of a piece of polyphonic music at the same time, it could be
a valuable tool for melody-level MIR. We are currently testing this
melody representation (operating from the contour estimate stage
in Figure 3 rather than the maximal contour estimate in Figure 4)
in conjunction with the hidden Markov model-based melody spot-
ting system described in Durey and Clements [4].
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