
ABSTRACT

Gaussian mixture model (GMM) classifiers have been shown to
give good instrument recognition performance for monophonic
music played by a single instrument. However, many applications
(such as automatic music transcription) require instrument
identification from polyphonic, multi-instrumental recordings. We
address this problem by incorporating ideas from missing feature
theory into a GMM classifier. Specifically, frequency regions that
are dominated by energy from an interfering tone are marked as
unreliable and excluded from the classification process. This
approach has been evaluated on random two-tone chords and an
excerpt from a commercially available compact disc, with
promising results.

1. INTRODUCTION

Automatic transcription of music remains a challenging problem
in digital audio processing. In order to derive a musical score from
an acoustic waveform, the fundamental frequency (F0), onset time
and offset time of each tone must be extracted, together with the
identities of the instruments on which these tones were played.
Although techniques exist for instrument recognition from
monophonic audio recordings (e.g., see [1]), these cannot be
directly applied to polyphonic music in which tones from different
instruments overlap in time. Here, we describe an approach to this
problem based on missing feature theory, which has been
successfully applied in the fields of robust speech recognition [2]
and speaker identification [3].

Only a few previous studies have attempted instrument
recognition from multi-instrumental music. Kashino and Murase
[4] describe an approach based on time-domain waveform
templates and adaptive filtering. For three instruments (flute,
violin and piano) they achieved classification performance of
about 75% for specially-arranged ensemble recordings. However,
the F0 and onset time of each note were supplied to their system.
Work by Kinoshita et al. [5] proposed a frequency-domain
approach, which used features related to the sharpness of onsets
and the spectral distribution of partials. F0s were extracted prior to
the recognition process. If it was estimated that partials from more
than one tone contributed to a frequency component, the resulting
feature value was either completely excluded from the recognition
process, or was only used after an estimated mean value for the
first identified instrument was subtracted. With this technique they
achieved 66%-75% correct classification for random two-tone
combinations (73%-81% correct if the true F0s were provided),
again using three different instruments (clarinet, violin and piano).

Few workers have reported the performance of their
algorithms on naturalistic sound recordings, such as commercially
available compact discs (CDs). Brown et al. [1] have attempted
instrument identification from such recordings, although their
system is limited to monophonic music. They describe a classifier

based on Gaussian mixture models (GMMs), which were trained
with a range of features including cepstra. Training and test
material were taken from different CD recordings of solo music.
They achieved an average instrument classification performance
of about 60% correct for four different woodwinds, which was
comparable with human performance. Similar but slightly lower
results have been reported by Martin [7], who used a wider range
of instruments and a number of different features in a hierarchical
classification scheme, and by Marques and Moreno [6], who
compared techniques based on GMMs and support vector
machines.

2. SYSTEM DESCRIPTION

The aim of the current study is to identify the instruments present
in CD recordings of polyphonic, multi-instrumental music. Since
tones from different instruments may overlap in time, a missing
feature approach is employed in which frequency regions that are
thought to be dominated by energy from a non-target tone are
marked as unreliable and excluded from the recognition process.
This idea is motivated by a model of auditory perception which
proposes that listeners are able to recognise partially masked
sounds from an incomplete acoustic representation [2]. In
polyphonic music, harmonics of one tone often overlap with those
of another tone. As a consequence, the energy values of these
partials no longer correspond to those of either instrument, and
conventional instrument recognition techniques will fail. 

A schematic view of our system is shown in Figure 1. The first
stage is a frequency analysis of the sampled audio signal.
Subsequently, the F0s of all tones are extracted and frequency
regions where partials of a non-target tone are found are marked as
unreliable. Hence, a binary ‘mask’ is derived, that indicates the
spectral features which should be employed by a GMM classifier.
Note that our approach relies on the detection of F0s and
approximately harmonic overtone spectra; it is therefore
applicable to most musical instruments but excludes drums and
other untuned percussion instruments.
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Figure 1: Schematic of the instrument classification system.
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2.1. Acoustic features

Sampled audio recordings were divided into frames 40 ms in
length with a 20 ms overlap. For each frame, a fast Fourier
transform (FFT) was computed, the log magnitude was taken and
the spectrum was normalised to a standard maximum value. 

Spectral features were computed by summing the energy
within 60 Hz frequency bands, with an overlap of 10 Hz between
adjacent features. Broader frequency bands would have the
advantage that features were more likely to represent formant
regions, which are mostly independent from the F0. However, for
the missing data approach local spectral features are required,
since it is necessary to mask the partials of an interfering harmonic
series without affecting the partials of the target tone. Spectral
features are computed for bands between 50 Hz and 6 kHz, which
includes the range of all possible F0s of the instruments used, and
their formant regions. 

Three issues are worthy of note here. First, only frame-based
spectral features are used in our system, rather than features that
encode the temporal evolution at the onset of tones (e.g., see [5],
[7]). This has the advantage that recognition does not rely on exact
onset detection, a task that is particularly hard in polyphonic
music.

Secondly, although cepstral coefficients have been used
successfully as features for instrument identification [1], [6], they
are not used here because they do not fit naturally into the missing
feature approach. A local frequency region which is corrupted by
energy from a non-target tone has no clear correspondence in the
cepstral domain. Hence, we employ local spectral features.

Finally, the spectral features used here are ordered on a linear
scale and have a constant bandwidth (60 Hz). An alternative
approach would be to use a scale based on human hearing, in
which bandwidth increases quasi-logarithmically with increasing
frequency. However, high-frequency regions of this scale will
integrate energy from several partials into the same feature; again,
this is not compatible with the missing feature approach, which
requires local spectral features. Our initial studies confirmed that
while logarithmic features performed well when all features were
available for classification, linearly scaled features performed
better in cases where some features were missing.

2.2. Fundamental frequency analysis

The F0 analysis used here is based on the notion of ‘harmonic
sieves’ [9]. Each sieve consists of a pattern for the harmonic
overtone series of each possible F0. The sieves are matched
against the peaks in the spectrum, and the best fitting sieve is
chosen as the corresponding F0. A score is derived for each sieve
based on the power of the matching spectral peaks and their
position within the sieve. Lower frequency slots in the sieve are
given a higher weighting in the score; this reflects the power
distribution of most natural instrument tones, and also helps to
prevent sub-octave errors.

For a mixture of tones containing more than one F0, an
iterative scheme is used in which the best matching sieve is
identified, and the corresponding spectral peaks are removed.
Further sieves are matched to the residual until all of the spectral
peaks are accounted for. 

To connect the frame based F0-hypotheses to longer tones, we
use a simple birth-and-death algorithm. F0 estimates in adjacent

frames are connected according to their proximity in frequency.
Specifically, a running average of the F0 of the tone is computed,
and further F0 estimates are recruited to the tone if they occur
within a matching interval. This approach allows for small
oscillatory changes in F0, such as vibrato, but breaks up chromatic
scales. Candidate tones are rejected if their total power is too small
or if their duration is too short.

2.3. Gaussian mixture model classifier with missing features

A GMM models the probability density function (pdf) of observed
spectral features by a multivariate Gaussian mixture density:

(1)

Here, x is a D-dimensional feature vector and N is the number of
Gaussian densities , each of which has a mean vector ,
covariance matrix  and mixing coefficient pi. Here, we assume
a diagonal covariance matrix; although this embodies an
assumption which is incorrect (independence of features) it is a
widely used simplification (e.g., see [1]). Accordingly, (1) can be
rewritten as

(2)

where mij and represent the mean and variance respectively of
a univariate Gaussian pdf. Now, consider the case in which some
components of x are missing or unreliable, as indicated by a binary
mask M. In this case, it can be shown [3] that the pdf (2) can be
computed from partial data only, and takes the form:

(3)

where is the subset of reliable features in M. Hence, missing
features are effectively eliminated from the computation of the
GMM pdf.

2.4. Training

Individual GMMs were trained for five different instruments from
two different instrument families (flute, oboe and clarinet from the
woodwind family, and violin and cello from the string family). To
make the models as robust as possible they were trained with
different recordings of each instrument, using both monophonic
musical phrases and single tone recordings. Recordings from eight
or nine different sources were used for every instrument, each
approximately one minute in length. Silence was removed from
the recordings prior to further processing by dropping all frames
with an energy level below 0.5% of the peak energy. For some
noisy recordings this approach was not completely reliable, and it
was necessary to remove silent segments manually. After an initial
clustering using a K-nearest neighbour algorithm, the parameters
of the GMMs were trained by the expectation-maximisation (EM)
algorithm. The number of Gaussian densities, N, was set to 120
after some experimentation; a further increase gave no
improvement.

3. EVALUATION

The system was evaluated in four stages. First, a baseline
performance was established for monophonic recordings, using
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masks in which all spectral features were included. Secondly,
random spectral deletions were introduced in order to assess the
robustness of the classifier to missing features. Thirdly, mixtures
of two simultaneous instrument tones were employed, with the
true F0s known to the system. Finally, a duet recording from a
commercially available CD was used, and instrument recognition
was carried out using F0s extracted by the system. 

3.1. Monophonic sounds

To establish an upper limit on identification performance with
missing features, tests were carried out with monophonic
recordings. Test material was taken from recordings which were
not included in the training material, consisting of chromatic scales
from the McGill Master Samples CD [8]. To avoid cues based
solely on the different pitch range of the instruments, only tones
from one octave (C4-C5) were used. The chromatic scales were
manually cut into single tones and classification decisions were
made for each tone. A confusion matrix for this test is shown in
Table 1. Average instrument identification performance over all
tones was 66%, with the worst performance for the violin (which
was often confused with the cello). Discrimination between
instrument families (woodwind or string) was 85% correct (i.e.,
when an instrument was confused, it tended to be confused with
another instrument from the same family).

Identification performance was also assessed on monophonic
phrases from a number of classical music CDs, which were not
used during training. Four recordings were used for the flute,
clarinet and violin, and three recordings for the oboe and cello. All
recordings were correctly identified except for two oboe
recordings which were mistaken for flutes, and one cello for a
clarinet. These results are comparable with those obtained by
Brown [1] for monophonic woodwind phrases.

3.2. Monophonic sounds with random spectral deletions

To test the robustness of the models with missing features, we
carried out preliminary studies with random spectral deletions in
monophonic sound files. Different percentages of the features
were marked as missing and recognition was performed only on
the remaining features. Results were encouraging, as even with
80% deletions performance in terms of correctly identified frames
dropped by no more than 10%-20%, both for single tones and
monophonic phrases. These results are consistent with those of
Cooke et al. [2] for random spectral deletions in an automatic
speech recognition task.

3.3. Concurrent tones with masks based on given F0

As the next step towards realistic performance, we considered the
task of identifying both instruments in a combination of two single

notes, played concurrently by different instruments. Masks were
based on the F0s of the tones, which in this case were supplied to
the algorithm. 

A test set was derived from the McGill samples by taking all
possible combinations of two tones within one octave, excluding
intervals in which both tones had the same F0 or were an octave
apart. Before mixing, the tones were normalised to have equal
peak amplitude. The length of each sound was determined by the
shorter of the two tones to ensure that two instruments were
present for the whole mixture.

The F0s (according to the nominal frequency of the tones in
equal temperament) were manually fed into the system. A perfect
harmonic overtone series was assumed and all features into whose
frequency range a harmonic from the non-target tone fell were
marked as unreliable and excluded from the recognition process.
Initial studies showed that the results improved when the exclusion
was based on ‘broadened’ harmonics, where each harmonic from
the non-target tone masked a small frequency range of ±5 Hz
instead of an exact frequency. This can be explained by the fact
that all of the tones exhibited some degree of vibrato, so that the
frequencies of all harmonics changed slightly from frame to frame.
Additionally, the overtone series for tones generated by real
instruments is unlikely to be exactly harmonic. Since it was shown
in Section 3.2. that identification is quite robust to missing
features, it is preferable to exclude too many features than to risk
including features which might be dominated by the non-target
tone. 

Using the F0-based masks, on average 49% of instruments
were correctly identified; confusions are shown in Table 2.
Discrimination between instrument families was 72% correct. 

3.4. Duet recording with masks based on estimated F0

The final step was to test the system on a realistic recording. We
chose ‘Chôro n. 2’, a duet for flute and clarinet from Villa-Lobos
because a professional recording [10] and the score were locally
available. The piece begins with a series of very fast notes, in
which the F0 tracker was unable to extract the F0 of each
instrument. We therefore used the slower beginning of the second
part (bar 10, see Figure 2) for the recognition experiment. All tones
were found except for one repeated onset of the A flat in the flute
voice. Currently, the system does not transform the ‘piano roll’
output shown in Figure 3 into an actual score, so correct notes were
identified manually from the estimated F0 values. 

Two versions of the system were evaluated on this mixture. In
the first, F0s were estimated and a mask was generated which
assumed a perfectly harmonic overtone series. For this case, the
instrument was correctly identified for 9 of the 12 tones. 

Flute Clarinet Oboe Violin Cello

Flute 77% 15% 0% 0% 8%

Clarinet 15% 62% 0% 8% 15%

Oboe 0% 15% 69% 8% 8%

Violin 0% 0% 15% 54% 31%

Cello 0% 0% 15% 15% 69%

Table 1: Confusion matrix for instrument recognition of single 
notes from the McGill Master Samples CD [8].

Flute Clarinet Oboe Violin Cello

Flute 75% 6% 0% 10% 9%

Clarinet 13% 49% 3% 22% 12%

Oboe 20% 13% 25% 28% 16%

Violin 3% 4% 10% 57% 25%

Cello 3% 9% 16% 36% 37%

Table 2: Confusion matrix for instrument recognition of two 
concurrent tones from different instruments, using masks derived 

from a given F0. 
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A second version of the system constructed a mask from the
estimated F0s without assuming a perfect overtone series.
Specifically, frequencies were excluded from the mask at which
there was a peak in the spectrum of the mixture that matched a
harmonic in the sieve for the non-target tone. For this version of
the system, the instrument was correctly identified for all 12 tones.
Whilst strong conclusions cannot be drawn from a single example,
our results appear to indicate that an accurate estimation of the
overtone series of the interfering sound is important.

4. CONCLUSIONS AND FUTURE WORK

An instrument recognition scheme has been described based on
missing feature theory and a GMM classifier. The system
generalises well, giving good results on single note recordings and
musical phrases. Importantly, the system is not limited to
identification of instruments in monophonic music (although its
performance on such tasks is comparable with previous
approaches, e.g. [1], [6], [7]). Rather, by using a F0-based missing
feature mask, the system is able to identify two different
instruments playing concurrently. 

The system was primarily evaluated on combinations of two
isolated tones played by different instruments. However, we also
obtained good recognition performance on a duet recording taken
from a commercially available CD of classical music. The system
is therefore promising as a tool for classification of instruments in
naturalistic audio recordings, with possible applications in
automatic transcription and information retrieval.

In future studies, we will include a wider range of test stimuli,
including more instruments than the five used here, and complex
musical mixtures which involve more than two concurrent
instruments. Additional work needs to be done on the F0
extraction algorithm to make it more robust, especially with
respect to short notes. An onset detection module could also help
to identify repeated notes with the same F0, and to distinguish real
notes from spurious ones.

Possibilities exist for improving instrument classification
within the current system. For example, bounded marginalisation
can be applied [2]. In this approach, an upper bound is placed on
the value of a missing feature (typically, the observed energy)
rather than discounting it completely. 

Clearly, further work is required to transform the output
shown in Figure 3 into a full musical transcription (such as that
shown in Figure 2), and this will involve solving problems
concerning quantisation in both time and frequency. However, our
current results on instrument classification are promising, and
suggest that our eventual goal – a system for transcribing classical
chamber music from audio CDs – is achievable.
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Figure 2: Original score of chôro n. 2 from Villa-Lobos.
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Figure 3: Output from the instrument classification algorithm in
‘piano roll’ format, corresponding to the score in Figure 2. Dotted
lines indicate a flute tone, plain lines indicate a clarinet tone.

0 20 40 60 80 100 120

Time (frames)

Fu
nd

am
en

ta
l F

re
qu

en
cy

 (
H

z)

100

200

300

400

500

600

700

V - 556

➡ ➠


