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ABSTRACT 

 
A musical piece typically has repetitive structures. 
Analysis of this structure can be used for music indexing, 
thumbnailing or segmentation. The research described 
here aims at automatically analyzing the repetitive 
structure of musical signals. First, we detect the repetition 
of each segment in a piece using dynamic programming. 
Second, we summarize this repetition information and 
infer the structure based on some heuristic rules. The 
performance of our approach is demonstrated visually 
using figures for qualitative evaluation, and by two 
structural similarity measures for quantitative evaluation. 
The experimental results using a corpus of Beatles’ songs 
show that automatic structural analysis of music is 
possible.  

 
1. INTRODUCTION 

 
A musical piece typically has repetitive structures. For 
example, a song may have a structure of ABA, indicating 
a three-part compositional form in which the second 
section contrasts with the first section, and the third 
section is a restatement of the first. Methods for 
automatically detecting the repetitive structure of a 
musical piece from acoustical signals will be very 
valuable for information retrieval systems; for example, 
the result can be used for indexing the musical content or 
for music thumbnailing and segmentation. 

There has been some recent research on this topic. 
Dannenberg and Hu presented a method to automatically 
detect the repetitive structure of musical signals [5]. 
Although promise of their method was demonstrated 
using several examples, there was no quantitative 
accuracy evaluation of their method in the paper. 

Two topics closely related to structural analysis of 
music have also been investigated. One is music 
summarization (or music thumbnailing), which aims at 
finding the most representative part (normally assumed to 
be the most frequently repeated section) of a song [9]. The 
other related topic is music segmentation. Most of 
previous research in this area attempted to segment 
musical pieces by detecting the locations where 
significant change of statistical properties occurs [1]. 

Additionally, Foote proposed a representation called 
a similarity matrix for visualizing and analyzing the 

structure of audio [6][7]. Attempts using this 
representation for music segmentation or thumbnailing 
have been proposed [7][3]. 

This paper describes research into automatic 
identification of the repetitive structure of musical pieces 
from acoustic signals. Specifically, an algorithm is 
presented that will output structural information including 
both the form (e.g., AABABA) and the boundaries 
indicating the beginning and end of each section. We 
assume that no prior knowledge about musical forms or 
the length of each section is provided, and the restatement 
of a section may have some variations. This requires both 
robustness and efficiency in our method. We also propose 
two novel structural similarity measures in this paper to 
quantitatively evaluate the performance of our algorithm, 
besides the visual representation of the results.  

The remainder of this paper is organized as follows. 
Section 2 illustrates our structural analysis approach. 
Section 3 presents the experimental results. Section 4 
gives conclusions and proposes future work. 
 

2. APPROACH 
 
This section explains the structural analysis method 
including five steps. All the parameter configurations 
mentioned in this section are based on our experimental 
corpus, which is described in Section 3. 
 
2.1. Feature Extraction 
 
The first step is to segment the signal into overlapped 
frames (e.g., 1024-sample window length with 512- 
sample overlap) and compute the feature of each frame.  

Two representations are investigated in this paper. 
One is the pitch representation, which use autocorrelation 
[10] to estimate the main frequency component of each 
frame. Although all the test data in our experiment are 
polyphonic, it turns out that, for musical signals with a 
leading voice, this feature can still capture much 
information. The other representation we explored is the 
frequency representation, i.e. FFT coefficients.  

We define the distance between two pitch features 
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We define the distance between two frequency features 
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In both cases, a distance value ranges between 0 and 1. 
 
2.2. Pattern Matching 
 
After computing the feature vector v (one-dimensional 
vector for the pitch representation and N-dimensional 
vector for the frequency representation) for each frame, 
we segment the feature vector sequence 

 (n is the number of frames) into 
overlapped segments of fixed length (e.g., 200 
consecutive vectors with 150 vectors overlap).  
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Since previous research have shown that dynamic 
programming is very effective for music pattern matching 
[8][11], here we use dynamic programming to match each 
segment (i.e., ) with the feature vector 
sequence starting from this segment (i.e., ). The 
distance between feature vectors has been defined in 
Section 2.1. Thus, we obtain a function d  
corresponding to the last row of the dynamic 
programming matrix, meaning how well the i
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th segment 
matches with different locations shifted by k from j in the 
feature vector sequence. Please note that the 
corresponding matching part starting from (j+k) is not 
necessarily of length l due to variations in the repetitive 
part. This step is the most time consuming one in our 
algorithm; its time complexity is O . )( 2n
 
2.3. Repetition Detection 
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Figure 1: One-segment repetition detection result of 
Yesterday. The local minima indicated by circles correspond 
to detected repetitions of the segment. 
 
In this step of the algorithm, we want to detect the 
repetition for each segment. To achieve that, we try to 
detect the local minima in  for each i, because 
normally a repetition of segment i will correspond to a 
local minimum in this function. Figure 1 shows the 
repetition detection result of one segment in the song 
Yesterday.   

][kdi

The repetitions detected may have add or drop errors. 
For example, in Figure 1, the first, the second, the fourth 
and the fifth detected local minima correspond to the four 
restatements of the same melodic segment (“… here to 
stay …”, “… over me …”, “… hide away …”, “… hide 
away …”). However, there is an add error occurring at the 
third detected local minimum. The number of add errors 
and that of the drop errors are balanced by a predefined 
parameter h; whenever the local minimum is deeper than 
height h, the algorithm reports a detection of repetition. 
Thus, when h increases, we have more drop errors but less 
add errors, and vise versa. For balancing between these 
two kinds of errors, our algorithm searches within a range 
for the best value of h, so that the number of detected 
repetitions is reasonable (e.g., ). 2/# ≈nsrepetitiondetected

 
2.4. Segment Merging 
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Figure 2: Whole-song repetition detection result of Yesterday. 
A circle or a square at location (j, k) indicates that the 
segment starting at vj is detected to repeat at vj+k. 
 
Figure 2 shows the repetition detection result of the whole 
song Yesterday. In this figure, each vertical pattern by 
fixing a particular j corresponds to the result as in Figure 
1. Since typically one musical phrase consists of multiple 
segments, if one segment in a phrase is repeated by a shift 
of k, all the segments in this phrase are repeated by shifts 
roughly equal to k. This phenomenon can be seen from 
Figure 2, where the squares have the horizontal patterns 
indicating consecutive segments have roughly the same 
shift. By detecting these horizontal patterns and 
discarding other detected repetitions, we reduce the 
effects of add/drop errors in step 2.  

The output of this step is a set of merged segments in 
terms of tuples , indicating that the 
segment starting at v  and ending at v  repeats roughly 

from  to v . Each tuple corresponds to one 

horizontal pattern in the whole-song repetition detection 
result. For example, the tuple corresponding to the left-
bottom horizontal pattern in Figure 2 is <100, 450, 370>. 
Since the shifts of repetitions may not be exactly the same 
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for segments in the merged one, we use the average of the 
shifts as the shift of the whole merged segment. 
 
2.5. Structure Labeling 
 
Based on the tuples obtained from the fourth step, we 
segment the whole piece into sections and label each 
section according to the repetition relation between them.  

To solve conflicts that might occur, the rule for 
labeling is that we always label the most frequently 
repeated sections first. Specifically, we find the most 
frequently repeated segment based on the first two 
columns in the tuples, label it and its shifted versions as 
section A. We then delete those tuples we have already 
labeled, repeat the same procedure for the remaining 
tuples, and label sections produced in each step as B, C, D 
and so on. If conflicts occur (e.g., a later labeled section 
has overlap with the previous labeled sections), we always 
remain the previous labeled sections intact and truncate 
the current sections. 
 

3. EXPERIMENT AND EVALUATION 
 
This section presents our experimental results and the 
evaluation of our approach to structural analysis.  
 
3.1. Data Set 
 
Our experiment uses the 26 Beatles’ songs in the two CDs 
The Beatles (1962-1966). We choose this corpus because 
all those songs have clear repetitive structures and leading 
voices. In our experiment, all the songs are 8-bit mono 
and sampled at 11kHz.  
 
3.2. Measures of Structural Similarity 
 

 
Figure 3: Comparison of the computed structure (above) and 
the ideal structure (bottom) of Yesterday. Sections in the 
same color indicate restatements of the section. Sections in 
the lightest grey correspond to those sections with no 
repetition. 
 
To compare the structure obtained from the algorithm 
with the ideal structure obtained by manually labeling the 
repetition, we use the structural figures as shown in Figure 
3. We also propose two measures here to measure the 
structural similarity so as to quantitatively evaluate the 
result. Both of the measures need to be as small as 
possible, ideally equal to zero. 

Measure 1 (structural measure) is defined as the edit 
distance between the strings of different structures. For 
the example in Figure 3, the distance between the ideal 

structure AABABA and the computed structure 
AABBABA is 1, indicating one insertion. Here we do not 
care how we label each segment unless the repetition 
relation is the same; thus, this ideal structure is deemed as 
equivalent (0-distance) to structure BBABAB, or structure 
AACACA. 

Measure 2 (boundary measure) is mainly used to 
evaluate how accurate the boundaries of each section are. 
It is defined as 

srBM /)1( −=     (3) 
where r is the ratio of the parts where both structures have 
the same labeling to the whole length, and s is the number 
of the sections in the ideal structure. 

 
3.3. Results 
 
Figure 4 and Figure 5 show the structural and boundary 
measures of our experimental results. In Figure 5, we also 
plotted the baseline results corresponding to labeling the 
whole song as one section. 
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Figure 4: Structural measures of the 26 Beatles’ songs. The 
line with circle markers corresponds to the pitch 
representation results. The line with square markers 
corresponds to the frequency representation results. 
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Figure 5: Boundary measures of the 26 Beatles’ songs. The 
line with circle markers corresponds to the pitch 
representation results. The line with square markers 
corresponds to the frequency representation results. The 
dashed line with diamond markers corresponds to baseline. 
 

From the two figures, we can see the performance of 
the third, the eighth and the ninth song using the pitch 
representation are the best (the structural measures are 0 
and the boundary measures are low). For example, the 
result of the third song From me to you using the pitch 
representation is shown in Figure 6. 
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Figure 6: Comparison of the computed structure (above) and 
the ideal structure (bottom) of From me to you. 
 

The one of the worst performance is the seventeenth 
song Day tripper using the pitch representation, whose 
result is shown in Figure 7. 

 

 
Figure 7: Comparison of the computed structure (above) and 
the ideal structure (bottom) of Day tripper. 
 

Some interesting results also occur. For example, for 
the twelfth song Ticket to ride, although the computed 
structure using the frequency representation is different 
from the ideal structure as shown in Figure 8, it also looks 
reasonable by seeing section A in the computed structure 
as the combination of section A and section B in the ideal 
structure.  

 

 
Figure 8: Comparison of the computed structure (above) and 
the ideal structure (bottom) of Ticket to ride. 
 

4. CONCLUSIONS AND FUTURE WORK 
 
The experimental result shows that, by either the pitch 
representation or the frequency representation, the 
performance of 15 out of 26 songs have structural 
measures less than or equal to 2 and the results of all the 
songs have boundary measures better than the baseline. 
This demonstrates the promise of our method. The 
inaccuracy in our algorithm mainly comes from the 
inaccuracy of pattern matching, which needs to be 
improved in the future. 

Our result does not show one representation is 
significantly superior to the other. However, other feature 
representations should be experimented in the future. We 
will also explore the possibility of generalizing our 
method to other music genres. Besides, inferring the 
hierarchical repetitive structures of music would be a 
more complicated yet interesting topic.  

Local event detection based segmentation may help 
improve the accuracy of the structural analysis. On the 
other hand, the result of the structural analysis can be 
combined with other musical features (e.g., chord 

progressions, change in dynamics, etc.) to improve the 
accuracy of music segmentation and music thumbnailing.  
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