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ABSTRACT

This paper concerns the development of a system for the
recognition of a context or an environment based on acoustic
information only. Our system uses mel-frequency cepstral
coeff icients and their derivatives as features, and continuous
density hidden Markov models (HMM) as acoustic models. We
evaluate different model topologies and training methods for
HMMs and show that discriminative training can yield a 10%
reduction in error rate compared to maximum-li kelihood
training. A li stening test is made to study the human accuracy in
the task and to obtain a baseline for the assessment of the
performance of the system. Direct comparison to human
performance indicates that the system performs somewhat
worse than human subjects do in the recognition of 18 everyday
contexts and almost comparably in recognizing six higher level
categories.

1. INTRODUCTION

Information about the environment would enable wearable
devices to provide better service to users' needs, e.g. by
adjusting the mode of operation according to the context. Many
sources of information for sensing the environment are
available. In this paper, we consider audio-based context
awareness, where the decision is based merely on the available
acoustic information.

The reported work continues the research first described
in [1]. In this paper, we describe a li stening test made to
facilit ate the direct comparison of the system’s performance to
that of human subjects. A forced choice test with identical test
samples and reference classes for the subjects and the system
is used. The second main concern in this paper is to evaluate
different methods for training the hidden Markov models used
to represent the feature statistics. We are dealing with a highly
varying acoustic material where practicall y any imaginable
sounds can occur. Thus, it is most likely that the acoustic
models we are using are not able to suff iciently model the
observation statistics. Therefore, we propose using
discriminative training instead of conventional maximum-
li kelihood training. Neither is there any guarantee that a
similar model would be appropriate for all classes.
Determining the structure of the model from the data is thus an
interesting approach, and we make experiments with an
algorithm recently proposed for simultaneous training and
model order selection of one-state HMMs [2].

2. ACOUSTIC MEASUREMENTS

The database consisted of 225 real-world recordings from a
variety of different contexts, or environments. The recording
procedure has been described in [1]. Two training and testing
setups were formed from the samples. Setup 1 consisted of 155
recordings of 24 contexts that were used for training and 70
recordings of 16 contexts were tested. Setup 2 was used in the
li stening test and in the direct comparison, and had two non-
overlapping sets of 45 samples from 18 different contexts in the
test set. A higher level of abstraction may be suff icient for some
appli cations. Hence, the recordings were also categorized into
six classes that are more general according to some common
characteristics. These categories are outdoors, vehicles, publi c
places, off ices and quiet places, home, and reverberant places.

3. SYSTEM DESCRIPTION

3.1. Feature extraction

Mel-frequency cepstral coeff icients (MFCC) were found to be a
well performing feature set in this task [1], and are used as the
front-end parameters in our system. The input signal is first pre-
emphasized with the FIR filt er 197.0,1 −− z . MFCC analysis is
performed in 30 ms windowed frames advanced every 15 ms.
The number of triangular filt ers was 40, and they occupied the
band from 80Hz to half the sampling rate. The number of
cepstral coeff icients was 11 after the zeroth coeff icient was
discarded, and appending the first time derivatives
approximated with a 3-point first-order polynomial fit resulted
in a feature vector size of 22. The resulting features were both
mean and variance normali zed.

3.2. The hidden Markov model

A continuous density hidden Markov model (HMM) with N
states consists of a set of parameters θ  that comprises the N-
by-N transition matrix, the initi al state distribution, and the
weights, means and diagonal variances of Gaussian mixture
model (GMM) state emission densities. Training is performed
in the training set that consists of the recordings

),...,( 1 ROO=Ο  and their associated class (context) labels

),...,( 1 RllL = . Specificall y, rO  denotes the sequence of

feature vectors measured from recording r. Typicall y, the HMM
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parameters are iteratively optimized with the Baum-Welch
algorithm that finds a local maximum of the maximum
likelihood (ML) objective function

where Θ  denotes the entire parameter set of all the contexts
},...,1{ Cc ∈ , and cA  is the subset of [1,R] that denotes the

recordings from the context c. In the recognition phase, an
unknown recording O  is classified using the maximum
a posteriori rule:

The needed li kelihoods can be eff iciently computed using the
forward-backward algorithm, or approximated with the
li kelihood of the single most likely path given by the Viterbi-
algorithm.

3.3. Discriminative training

ML estimation is well j ustified if the observations are
distributed according to the model. If a model mismatch occurs,
other approaches may lead into better performing models.
Discriminative training methods such as the maximum mutual
information (MMI) aim at maximizing the abilit y to distinguish
between the observation sequences generated by the model of
the correct class and those generated by models of other
classes [5]. The MMI objective function is given as

where )( rlp  and )(cp  are prior probabiliti es. Unfortunately,
there exists no simple optimization method for this problem.
The optimization involves the entire model set even if only
observations from a single class were used.

Different discriminative algorithms have been proposed.
The one used in this paper is perhaps the most straightforward
to implement. The algorithm was proposed by Ben-Yishai &
Burshtein, and is based on the approximated maximum mutual
information (AMMI) criterion [6]. Their criterion is:

where cB is the set of indices of training recordings that were
recognized as c. cB  is obtained by maximum a posteriori
classification performed on the training set. The parameter

10 ≤≤ λ  controls the “discrimination rate”.
The prior probabiliti es )(cp  do not affect the

maximization of )(ΘJ , thus the maximization is equivalent to
maximizing the following objective functions:

for all Cc ≤≤1 . Thus, the parameter set of each context can
be estimated separately, which leads to a straightforward
implementation. The authors give the re-estimation equations
for HMM parameters [6]. Due to space restrictions, we present
only the re-estimation equation for the transition probabilit y
from state i to state j:

where ),|,(),( 1 cjqiqpji r
ttt O=== +ξ and .),(

1∑ =
=

N

j
tt jiξγ

The state at time t is denoted by tq , and the length of the

observation sequence rO  is rT . In a general form, for each

parameter ν  the re-estimation procedure is

where )(νN  and )(νD  are accumulators that are computed

according to the set cA , and )(νDN  and )(νDD  are the

discriminative accumulators computed according to the set cB ,

obtained by recognition on the training set. This discriminative

re-estimation can be iterated, we used typicall y 5 iterations.

3.4 Simultaneous training and order selection of GMMs

A one-state continuous-density HMM, i.e. a GMM, is treated
here separately since recently an interesting algorithm for
simultaneous training and order selection of GMMs has been
presented [2]. The algorithm is based on embedding the
evaluation of an information theoretic criterion, in this paper
the Minimum Description Length (MDL) within the EM-
iterations. The criterion includes a term measuring the
li kelihood of the data, and a penali zing term that grows, as the
models become more complex. The algorithm starts with a large
number of components 1max >>M , and then merges or
destroys components with littl e support, evaluating the criteria
for each model candidate. The final model is the one giving the
minimum for the criterion. This algorithm is referred as the
agglomerative EM (AEM).

In our implementation of the algorithm, the search for the
components to be merged was slightly modified from the
procedure presented in [2]. After the EM converged, the
component minm with the smallest weight was merged into the
component that corresponded to the minimum of the symmetric
Kullback-Leibler divergence between minm  and the other
densities.
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4. RESULTS

4.1. Test setup

Two test setups were used. In Setup 1, 70 samples of 16
different contexts were tested, and models for 24 reference
classes were trained using all the 155 samples not included in
the test set. In the training set, the length of samples was 160 s,
in the test set only 60 s was used in all simulations.

For Setup 2, models were trained separately for both 45-
sample subsets, and each time all the remaining samples were
used for model training. The final recognition result was the
average of the two results.

4.2. GMM

The results obtained with GMMs trained with different
algorithms are presented in Table 1. The baseline GMM
recognition system consisted of a fixed-order model trained
with the EM-algorithm. We trained models with different
number of components (M). The best accuracy was obtained
with just two Gaussian components. Table 1 also shows the
results obtained using the discriminative training algorithm
(AMMI). Values of λ ranging from 0.1 to 0.9 were tested, and
the number of discriminative training iterations was 5. In
Table 1, the recognition rate obtained by using the model
corresponding to the best training set recognition accuracy is
reported. The optimal value for λ  was between 0.3 and 0.4,
and the number of discriminative training iterations giving the
best training set accuracy varied between 2 and 5. It was
observed that usuall y the maximal test set accuracy was
obtained with value of λ and number of iterations other than
those resulting in the best accuracy on the training set.
However, since we do not have access to the test set in real
appli cations, those can only be considered as the upper limit of
achievable recognition rate, and are 71.9%, 73.7% and 72.1%
for 1,2, and 3 components, respectively.

The size of our database compared to the dimension 22 of
the feature vector proved out to be too small for the AEM
algorithm to work properly: it gave considerably larger model
orders than the optimal baseline with M = 2. We wanted to test
if AEM could provide any performance gain if lower-
dimensional features were used. We downsampled the data to 8
kHz, and used only 7 dimensional MFCC coeff icients as
features. Now, the AEM gave an average model order of 38.6
with standard deviation 3.98. The baseline with 20 components
provided an accuracy of 64.1%, whereas the models trained
with the AEM resulted in 62.6% accuracy.

4.3 HMM

The Baum-Welch algorithm was used to train the baseline
HMMs. The state means and variances were initi ali zed by k-
means clustering. The topologies tested were a full y connected
HMM and a left-right HMM with skips. The number of states
and component densities per state was varied. Increasing the
number of components in each state was obtained by graduall y
increasing the model order from one to the desired order by
splitti ng the component with the largest weight. The results in
Table 2 are shown for one-component emission densities that
yielded the best recognition accuracy. Increasing the number of
components in state emission densities lowered the recognition
rates somewhat.

Table 2 also shows the results obtained using
discriminative training (AMMI). As with GMMs, different
values of λ  and different number of discriminative training
iterations were tested, and Table 2 shows the recognition rate
obtained with models giving the best accuracy on the training
set.

5. LISTENING TEST

The aim of the li stening test was to study the human abilit y to
recognize contexts based on auditory signals only, in order to
obtain a baseline for the assessment of computational model
performance. This experiment was organized in three li stening
tests. The first studied how accurately and how fast the
environment could be recognized. The second considered the
importance of spatial information in recognition. The third
investigated the importance of different cues for recognition.

5.1 Listening test setup

All tests were performed in an ITU-R BS.1116-1 [3] compliant
li stening room. Audio samples were reproduced over a
stereophonic setup using Genelec 1031A loudspeakers placed at
±30° in front of the li stener. The test design and administration
were performed using the Presentation software [4].

18 subjects participated in the test, which was designed for
two groups, each including the same number of stimuli and
identical contexts. This permitted the use of a larger amount of
samples, while keeping the total duration of the test within one
hour per subject. The li stening test started with a training
session using nine samples not included in the actual test to
famili arize the subjects with the user interface and the test
setup. In the three experiments, subjects were instructed to try
to recognize the context as fast as possible. The subjects were
asked to make a forced choice from the li st of 27 possible
responses.

# of components Baseline AMMI
M = 1 66.4 68.3
M = 2 70.6 73.2
M = 3 67.4 67.4

Table 1. Recognition rates with Setup 1 using GMMs. Table 2. Recognition rates with Setup 1 using HMMs.

Fully connected Left-right
States ML AMMI ML AMMI

2 74.7 77.3 - -
3 73.7 73.7 74.5 75.0
4 68.0 71.9 71.1 72.7
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5.2 Results of the listening test

Two measures were analyzed from this test, the recognition rate
and the reaction time for each stimulus. The recognition rate
was analyzed as a set of right or wrong answers using a non-
parametric statistical procedure. For the reaction time, the
statistical analysis was performed with a parametric statistical
procedure (ANOVA).

5.2.1 Stereo test
The average recognition rate was 69% for context and 88%
allowing confusions within the six higher level categories.
Figure 1 presents the recognition rate for each of the 18
contexts averaged over all li steners (differences between groups
were not significant). Overall , the average reaction time was 13
seconds ranging from 5 seconds (nature) to 21 seconds (li brary).
It should be noted, however, that reaction time for the higher
level recognition only would probably be significantly faster.
Indeed, some of the subjects reported that they could exclude
most of the contexts fast, but the final decision between specific
contexts from the same broader class took more time.

5.2.2 Mono/Stereo/Binaural test
For this test, recognition rates were compared for monophonic,
stereophonic and binaural presentations. A set of 18 samples
not included in the stereo test from nine different environments
was used for each configuration. For the binaural samples,
cross-talk cancellation was applied. The recognition rate
averaged over the three techniques was 66% for context and it
increased to 88% for the higher level categories. The average
recognition rate for binaural, mono and stereo samples were
62%, 63% and 70% at the context level, respectively. For the
higher level categories, the rates were 90%, 86% and 89%.
These differences are not statisticall y significant. However,
differences in reaction times were significant.

5.2.3 Qualitative test
In the last sub-test, subjects were asked to li sten to nine
samples and rate the information they used in the recognition
process. After each stimulus, li steners fil ed a form in which
they were asked to evaluate and rate on a 6-point discrete scale
the importance of different cues in recognition. The results
indicate that human activity and spatial information cues are
most often used. Two cues that were not so often used but
received high importance ratings were prominent events and
nature sounds.

6. COMPARISON TO THE HUMAN ABILITY

A direct comparison to the human abilit y was made using
exactly the same test samples and reference classes as in the
li stening test. Figures 1 and 2 summarize the results for the
subjects and the system on this test setup. Results are shown
both for context recognition and at the higher category level.
The results of the system have been obtained using 2-state full y-
connected HMMs. The averaged recognition accuracies of the
computer system are 61% and 85% against the accuracies 69%
and 88% obtained in the li stening test for context and higher
level classes, respectively. No improvement was observed by
using discriminative training; the results with models giving the
best training set accuracy were the same as with the baseline.
However, the upper-limit recognition rates were 64% and 90%
for 18 and 6 classes, respectively, with 4.0=λ  and four
iterations of discriminative training. One explanation for the
differences in results at the context level may be that the system
does not use any spatial information.
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Figure 1. Comparison of recognition rates for the 18 contexts.
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