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ABSTRACT

This paper concerns the development of a system for the
recognition of a context or an environment based on acoustic
information only. Our system uses mel-frequency cepstra
coefficients and their derivatives as feaures, and continuous
density hidden Markov models (HMM) as acoustic models. We
evaluate different model topologes and training methods for
HMMs and show that discriminative training can yield a 10%
reduction in error rate compared to maximum-likelihood
training. A listening test is made to study the human acauracy in
the task and to dbtain a baseline for the assesament of the
performance of the system. Direct comparison to human
performance indicates that the system performs somewhat
worse than human subjects do in the recognition of 18 everyday
contexts and almost comparably in recognizing six higher level
categories.

1. INTRODUCTION

Information about the ewironment would enable weaable
devices to provide better service to users neels, e.qg. by
adjusting the mode of operation according to the context. Many
sources of information for sensing the ewironment are
available. In this paper, we consider audo-based context
awareness where the decision is based merely on the avail able
acoustic information.

The reported work continues the research first described
in [1]. In this paper, we describe a listening test made to
facilit ate the direct comparison of the system’s performance to
that of human subjects. A forced choice test with identical test
samples and reference classes for the subjects and the system
is used. The second main concern in this paper is to evaluate
different methods for training the hidden Markov models used
to represent the feaure statistics. We ae deding with a highly
varying acoustic material where practicaly any imaginable
sounds can ocaur. Thus, it is most likely that the acoustic
models we ae using are not able to sufficiently model the
observation  statistics.  Therefore, we propose using
discriminative training instead of conventional maximum-
likelihood training. Neither is there aly guarantee that a
similar model would be @propriate for al classes.
Determining the structure of the model from the data is thus an
interesting approach, and we make experiments with an
algarithm recently proposed for simultaneous training and
model order selection of one-state HMMs [2].
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2. ACOUSTIC MEASUREMENTS

The database consisted of 225 red-world recordings from a
variety of different contexts, or environments. The recording
procedure has been described in [1]. Two training and testing
setups were formed from the samples. Setup 1 consisted of 155
recordings of 24 contexts that were used for training and 70
recordings of 16 contexts were tested. Setup 2was used in the
listening test and in the direct comparison, and hed two non-
overlapping sets of 45 samples from 18 dfferent contexts in the
test set. A higher level of abstraction may be sufficient for some
applications. Hence, the recordings were dso categorized into
six classes that are more general acocording to some common
characteristics. These categories are outdoars, vehicles, pulic
places, offices and quiet places, home, and reverberant places.

3. SYSTEM DESCRIPTION
3.1. Feature extraction

Mel-frequency cepstral coefficients (MFCC) were foundto be a
well performing feaure set in this task [1], and are used as the
front-end perametersin our system. The input signal isfirst pre-
emphasized with the FIR filter 1,-0.97z"*. MFCC analysis is
performed in 30 ms windowed frames advanced every 15 ms.
The number of triangular filters was 40, and they occupied the
band from 80Hz to half the sampling rate. The number of
cepstral coefficients was 11 after the zeroth coefficient was
discarded, and appending the first time derivatives
approximated with a 3-point first-order polynomial fit resulted
in a feaure vector size of 22. The resulting feaures were both
mean and variance normali zed.

3.2. The hidden Markov model

A continuous density hidden Markov model (HMM) with N
states consists of a set of parameters 6 that comprises the N-
by-N transition matrix, the initial state distribution, and the
weights, means and dagonal variances of Gausdan mixture
model (GMM) state emisson densities. Training is performed
in the training set that consists of the recordings

O:(Ol,...,OR) and their asxociated class (context) labels

L=(%...J%). Specificaly, O" denotes the sequence of
feaure vectors measured from recording r. Typically, the HMM
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parameters are iteratively optimized with the Baum-Welch
algarithm that finds a local maximum of the maximum
likelihood (ML) objective function

C
F(O) = z %Iog pO" |c),

c=1r
where © denotes the entire parameter set of all the contexts
c0{1...C}, and A, is the subset of [1,R] that denotes the
recordings from the context c. In the recognition phese, an
unknown recording O is clasdfied using the maximum
a posteriori rule:

¢ = argmaxp(Q" | c).
Cc

The neaed likelihoods can be dficiently computed using the
forward-backward agorithm, or approximated with the
likelihood of the single most likely path given by the Viterbi-
algorithm.

3.3. Discriminative training

ML estimation is well justified if the observations are
distributed acoording to the model. If a model mismatch ocaurs,
other approaches may lead into better performing models.
Discriminative training methods guch as the maximum mutual
information (MM1) aim at maximizing the &bility to distinguish
between the observation sequences generated by the model of
the correct class and those generated by models of other
classes [5]. The MM objective function is given as

R
M (©)=log p(L |O) = zlogp(lr |0")
=1

R % [ ] C H
E 0 p(lr) ( r||r) l E () ( rl )
Z g PO Ogczlpcpo ¢)0

where p(I") and p(c) are prior probabiliti es. Unfortunately,
there eists no simple optimization method for this problem.
The optimization involves the entire model set even if only
observations from a single classwere used.

Different discriminative dgoarithms have been proposed.
The one used in this paper is perhaps the most straightforward
to implement. The dgorithm was proposed by Ben-Yisha &
Burshtein, and is based on the approximated maximum mutual
information (AMMI) criterion [6]. Their criterionis:

i(0)= i ggog[p(c)p(of|c)]-Ar;:og[p(c)p(oqc)]é

where B is the set of indices of training recordings that were
recoghized as c. B, is obtained by maximum a posteriori
clasdfication performed on the training set. The parameter
0< A <1 contrals the “discrimination rate”.

The prior probabilities p(c) do not affect the
maximization of J(©), thus the maximization is equivalent to
maximizing the foll owing dbjective functions:

J(©)= %Iog p(o'|c)— A

r

; log p(or|c)

s,

for al 1<c<C. Thus, the parameter set of each context can
be estimated separately, which leads to a straightforward
implementation. The aithors give the re-estimation equations
for HMM parameters [6]. Due to space restrictions, we present
only the re-estimation equation for the transition probability
from state i to state j:

3 = zruﬁb z:—;llft(i’ j)_Az,DBC le_lft(i, i)
Y T Y SO

. . o N
where (i, /) = p(c =i,60a = |10".C)and vy = " &(i.))
The state & time t is denoted by ¢;, and the length of the

observation sequence O' is T, . In a general form, for each
parameter V the re-estimation procedureis

_ N)-ANp(v)

~ D(v)-ADp (v)
where N(v) and D(v) are aaumulators that are computed
acoording to the set A., and Np(v) and Dp(v) are the
discriminative accumulators computed acoording to the set B ,
obtained by recognition on the training set. This discriminative
re-estimation can be iterated, we used typically 5 iterations.

3.4 Simultaneous training and order selection of GMMs

A one-state continuous-density HMM, i.e. a GMM, is treaed
here separately since recently an interesting agorithm for
simultaneous training and order selection of GMMs has been
presented [2]. The dgaithm is based on embedding the
evaluation of an information theoretic aiterion, in this paper
the Minimum Description Length (MDL) within the EM-
iterations. The criterion includes a term measuring the
likelihood of the data, and a pendlizing term that grows, as the
models become more complex. The dgorithm starts with a large
number of components M, >>1, and then merges or
destroys components with littl e support, evaluating the criteria
for each model candidate. The final model is the one giving the
minimum for the criterion. This agorithm is referred as the
agglomerative EM (AEM).

In our implementation of the dgarithm, the search for the
components to be merged was dightly modified from the
procedure presented in [2]. After the EM converged, the
component my;, with the small est weight was merged into the
component that corresponded to the minimum of the symmetric
Kullback-Leibler divergence between my,;, and the other
densities.
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Table 1. Recognition rates with Setup 1 using GMMs.

Table 2. Recognition rates with Setup 1 using HMMs.

# of components | Baseline AMMI
M=1 66.4 68.3
M=2 70.6 732
M=3 67.4 67.4
4. RESULTS
4.1. Test setup

Two test setups were used. In Setup 1, 70 samples of 16
different contexts were tested, and models for 24 reference
classes were trained using al the 155 samples not included in
the test set. In the training set, the length of samples was 1605,
in the test set only 60 swas used in al simulations.

For Setup 2 models were trained separately for both 45
sample subsets, and eech time dl the remaining samples were
used for model training. The final recognition result was the
average of the two results.

4.2. GMM

The results obtained with GMMs trained with dfferent
algarithms are presented in Table 1. The baseline GMM
recognition system consisted of a fixed-order model trained
with the EM-algorithm. We trained models with dfferent
number of components (M). The best accuracy was obtained
with just two Gausdan components. Table 1 also shows the
results obtained using the discriminative training agorithm
(AMMI). Values of A ranging from 0.1 to 0.9 were tested, and
the number of discriminative training iterations was 5. In
Table 1, the recognition rate obtained by using the model
corresponding to the best training set recognition accuracy is
reported. The optimal value for A was between 0.3 and 04,
and the number of discriminative training iterations giving the
best training set acauracy varied between 2 and 5 It was
observed that usually the maximal test set acauracy was
obtained with value of A and number of iterations other than
those resulting in the best acauracy on the training set.
However, since we do not have access to the test set in red
appli cations, those can only be considered as the upper limit of
achievable recognition rate, and are 71.9%, 73.7% and 721%
for 1,2, and 3components, respectively.

The size of our database compared to the dimension 22 of
the feaure vector proved out to be too small for the AEM
algarithm to work properly: it gave considerably larger model
orders than the optimal baseline with M = 2. We wanted to test
if AEM could provide ay performance gain if lower-
dimensional feaures were used. We downsampled the datato 8
kHz, and wed only 7 dmensiona MFCC coefficients as
feaures. Now, the AEM gave an average model order of 38.6
with standard deviation 3.98. The baseline with 20 components
provided an acauracy of 64.1%, whereas the models trained
with the AEM resulted in 626% accuracy.

Fully connected L eft-right
States ML AMMI ML AMMI
2 747 773 - -
3 737 737 745 75.0
4 68.0 719 711 727
43HMM

The Baum-Welch agorithm was used to train the baseline
HMMs. The state means and variances were initialized by k-
means clustering. The topologes tested were afully connected
HMM and a left-right HMM with skips. The number of states
and component densities per state was varied. Increasing the
number of components in each state was obtained by gradually
increasing the model order from one to the desired order by
splitti ng the component with the largest weight. The results in
Table 2 are shown for one-component emisson densities that
yielded the best recognition acauracy. Increasing the number of
components in state emisson densities lowered the recognition
rates ssmewhat.

Table 2 aso shows the results obtained using
discriminative training (AMMI). As with GMMs, different
values of A and dfferent number of discriminative training
iterations were tested, and Table 2 shows the recognition rate
obtained with models giving the best acauracy on the training
set.

5. LISTENING TEST

The @m of the listening test was to study the human ability to
recognize contexts based on auditory signals only, in order to
obtain a baseline for the asssanent of computational model
performance. This experiment was organized in threelistening
tests. The first studied how acaurately and how fast the
environment could be recognized. The second considered the
importance of spatial information in recognition. The third
investigated the importance of different cues for recogniti on.

5.1 Listening test setup

All tests were performed in an ITU-R BS.11161 [3] compliant
listening room. Audio samples were reproduced over a
stereophonic setup wsing Genelec 1031A loudspedkers placed at
+30° in front of the listener. The test design and administration
were performed using the Presentation software [4].

18 subjects participated in the test, which was designed for
two goups, each including the same number of stimuli and
identical contexts. This permitted the use of a larger amount of
samples, whil e keguing the total duration of the test within one
hour per subject. The listening test started with a training
sesson wsing nine samples not included in the actual test to
famili arize the subjects with the user interface and the test
setup. In the three experiments, subjects were instructed to try
to recognize the context as fast as possble. The subjects were
asked to make aforced choice from the list of 27 possble

responses.
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Figure 1. Comparison of recognition rates for the 18 contexts.

5.2 Results of thelistening test

Two measures were analyzed from this test, the recogniti on rate
and the reaction time for each stimulus. The recognition rate
was analyzed as a set of right or wrong answers using a non-
parametric statistical procedure. For the reection time, the
stetistical analysis was performed with a parametric statistical
procedure (ANOVA).

5.2.1 Stereo test

The average recognition rate was 69% for context and 88%
alowing confusions within the six higher level categaries.
Figure 1 presents the recognition rate for eech of the 18
contexts averaged over al li steners (diff erences between groups
were not significant). Overall, the average reection time was 13
seconds ranging from 5 seconds (nature) to 21 seconds (library).
It should be noted, however, that reection time for the higher
level recognition only would probably be significantly faster.
Indeed, some of the subjects reported that they could exclude
most of the contexts fast, but the final decision between specific
contexts from the same broader classtook more time.

5.2.2 Mono/Sereo/Binaural test

For this test, recognition rates were compared for monophonic,
stereophonic and kinaural presentations. A set of 18 samples
not included in the stereo test from nine different environments
was used for each configuration. For the binaural samples,
crosstalk cancellation was applied. The recognition rate
averaged over the threetechniques was 66% for context and it
incressed to 88% for the higher level categaries. The average
recognition rate for binaural, mono and stereo samples were
62%, 63% and 700 at the context level, respectively. For the
higher level categories, the rates were 90%, 86% and 8%%.
These differences are not statistically significant. However,
differences in reaction times were significant.

5.2.3 Qualitative test

In the last sub-test, subjects were asked to listen to nine
samples and rate the information they used in the recognition
process After each stimulus, listeners filed a form in which
they were asked to evaluate and rate on a 6-point discrete scale
the importance of different cues in recognition. The results
indicate that human activity and spatial information cues are
most often used. Two cues that were not so dten used bu
received high importance ratings were prominent events and
nature sounds.
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Figure 2. Comparison of recognition rates on the six
higher level categories.

6. COMPARISON TO THE HUMAN ABILITY

A direct comparison to the human ability was made using
exactly the same test samples and reference classes as in the
listening test. Figures 1 and 2 summarize the results for the
subjects and the system on this test setup. Results are shown
both for context recognition and at the higher categary level.
The results of the system have been obtained using 2-state full y-
connected HMMs. The averaged recognition acauracies of the
computer system are 61% and 83% against the acauracies 69%
and 880 obtained in the listening test for context and Hgher
level classes, respectively. No improvement was observed by
using discriminative training; the results with models giving the
best training set acauracy were the same a with the baseline.
However, the upper-limit recognition rates were 64% and 90/
for 18 and 6 classes, respectively, with A =0.4 and four
iterations of discriminative training. One explanation for the
differencesin results at the context level may be that the system
does not use any spatial information.
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