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ABSTRACT second order finite differences of sub-band intensities of the
: . . spectrum, assuming the source spectrum has an either lo-
A Bay(_as-rule base_d hierarchical blnaurallspund source lo- cally constant intensity or constant slope. Netal. pro-
calization system is proposed. By combining three local- posed a three-layer neural network for localization by feed-

!zatlon_ cues: interaural time differences (ITDs), mterau_ral ing ITDs, IIDs and the spectrums from both channels into
intensity differences (1IDs), and spectral cues, and a hier- the network [5]

archical decision making structure, this system enables to
locate a sound source in a 3D space by using only the bin-
aural inputs. Preliminary simulations have shown the effec-
tiveness of this system. It can be used in studying binaural
localization mechanism and applications such as in hearing
aids and robotics.

In this paper, a Bayes-rule based hierarchical binaural
sound source localization system is proposed, which em-
ploys all ITDs, 1IDs and spectral cues. The decision is made
in three steps. First, a set of possible locations are selected
by ITDs. Then these locations are further narrowed down
by IIDs. The final decision is made by spectral cues. It will
be explained later, this is a plausible approach from both
1. INTRODUCTION psychophysical and engineering point of views.

The study of binaural localization mechanism can be traced
back to the late 19th century, when British physicist Lord
Rayleigh proposed the "Duplex Theory” for localization in
the lateral dimension [1]. The "Duplex Theory” states that
interaural time differences (ITDs) provide cues to the lat-
eral positions of low-frequency sounds, and interaural in-
tensity differences (IIDs) provide cues of high-frequency

sounds. Rayleigh's theory has been proven in numerous z1(n) = hi(n) * 5(n) + m(n) 1)
psychophysical and physiological studies, but failed to ex- zr(n) = hy(n) * s(n) + n.(n)

plain the front/back discrimination and vertical localization

by using these binaural cues. Research in the past few decad¥§erefu(n) andh,.(n) are the transfer functions for the
has revealed the importance of monaural cues, which are sdlirect paths to the two ears, ang(n) andn,(n) are the re-

far mainly spectral cues, for localization. ceived noises. In general, the noises consist two parts, one is

Most of the existing binaural models use only ITDs for due to the reverberation, which is related to the sosifag,
sound source localization. They are all based on the coin-2another is due to other sources in the environment, which

cidence model proposed by Jeffress in 1948 [2], which is €@n be considered independent with the dominant source
basically a cross-correlation calculator to find the time dif- (7). To emphasis the key concepts of the localization cues
ference of arrival between two ears. A few efforts have been €Xtraction scheme, the effects of noise and reverberation are

2. LOCALIZATION CUESEXTRACTION

Denote the source signal aé1), and the received signals
at the left and the right ear ag(n) andz,.(n), respectively.
The following relations hold.

made to use IIDs and spectral cues in localization models. ignored in this paper.

Fuzessery used diagrams and the differences of sound in-

tensity levels at three arbitrary frequencies, by assuming flats 1 | nteraural Time Differences (ITDs)

spectrum of a sound source [3]. Zakarauskas and Cynader

further improved Fuzessery’s work by relaxing the flat spec- If further assume that each transfer functién&:) andh,.(n)
trum assumption [4]. They proposed a computational model can be approximated by a pure magnitude decay and a pure
using spectral cues for localization by applying the first and time delay, the cross-correlation between the signals from
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two ears become Left spectral
difference cues

lemr = aRss (T - D). (2) Lenm’ . > Cochlear P Interaural
. . . . —_ Intensities » filterbank > difference > IIDs
Wherea is a scalar and is the interaural time difference Right spectrum

(ITD). This assumption holds for the low frequency com- Right spectral
. . . . . iference

ponents, where the main interaural difference is the time of

arrival. The cross power spectrum is defined as the Fourier

transform of the cross correlation of the two signals Fig. 1. Diagram for lIDs and speciral cues exiraction.

N
Gy, (W) = Z Rg,o. (T)e7. (3) whereS(w) is the power spectrum of the source dtig(w)
ne0 and H, (w) are the transfer functions to the two ears. The
intensities are

Ij(w) = 10log P, (w) = 10log S(w) + 201og | H;(w)]

It can be calculated as

Gore, (w) = Xi(w) X (w). (4)
I.(w) =10log P, (w) = 10log S(w) + 201og |H, (w)|
where the superscriptiondenotes the complex conjugate. (9)
Take the Fourier transform of (2), the cross power spectrum  After the intensities have been calculated, the signals
of the received signals is then are passed through a cochlear filterbank. For each qual-
Gron (@) = aGlyy (w)e 7P, 5) ified sub-band, the following relations hold,

Itindicates that the ITD is only related to the phase of the I = W;(w)[101og S(w) + 201og H (w)]dw
cross power spectrum. The normalized cross-correlation [6] wEQ;
's given by =10 Wi(w) log S(w)dw

. 1 [T Gepe, (W) we; (10)

Rzlzr (T) = _/ el dw

21 ) 1 |Gaya, ()] (6) +20 Wi (w) log H (w)dw
=4d(r — D). we;

Therefore the ITDD can be estimated as
where(); is the frequency range for sub-bah@&ndW ; (w)

D = arg max Rz (7). () is the weight from the cochlear filter. The subscriptions for
the left and the right channels are dropped to simplify the
2.2. Interaural Intensity Differences (11Ds) and Spec- notation.

tral Cues

The extractions of 1IDs and spectral cues share many com-22:1. 1IDs
mon processes. First, both of them are calculated in in- The 11D for sub-band is defined as
tensity domain. This is due to two reasons. One is from

a neuroscience point of view, the response of neurons in Ei =1 — I
the auditory system is roughly proportional to intensity lev- = (xi + Fii) — (xi + F) (11)
els [7]. The other is from an engineering point of view, in —F,; — F,,.

intensity domain, the relation between signal and channel
transfer function becomes simple addition. Secondly, both Because the signal intensity: is the same for the left and
of them are extracted for each sub-band instead of the wholethe right channel, 1IDs do not depend on the input signal
spectrum as a whole, and for the high-frequency sub-bandsin general. However, for a narrow-band signal, [ID will be
only. This is because the detailed shape of the spectrum carzero at the subband where the signal power is zero. There-
provide useful information for localization, and the inten- fore, IIDs will become signal depended. This problem can
sity difference is negligible at the low-frequency sub-bands. be solved by accumulating 1IDs over time, if assuming the
The diagram of 1IDs and spectral cues extraction is shown signal is not always narrow-band.
in Fig. 1.

Ifignoring the background and reverberation noises, the 2 2 2 gpectral Cues

power spectrums of the received signals at two ears are _ . .
The use of spectral cues in this paper mainly follows the

Pi(w) = S(w)|Hi(w)? ()  Work done by Zakarauskasal. [4], where the first and the
P, (w) = S(w)|H,(w)|?, second finite differences of a spectrum are applied.
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As shown in (9), the intensity of the received signal at the last step, and the spectral cues are combined to make
each ear can be separated into two independent parts. Onghe final decision. The reasons for such an approach are
is related only to the signal and the other is related only to both from psychophysical evidences and engineering con-
the transfer function. Assuming that the signal log power sideration. It has be shown by human listener experiments
spectrum is relative flaty; ~ x;+1, and the first finite dif- that the ITDs are the most robust localization cues, and then

ference between the observed intensity levelsind ;11 the 1IDs, and the spectral cues are very sensitive to the envi-
is ronment and input signals [8]. In term of signal processing,
Di=1litn - I; ITDs can be more accurately estimated comparing to 11Ds,

= (Xi+1 — Xxa) + (Fip1 — ) (12)  and again, spectral cues are still related to the input signals
~ Fiyn — F i=1,N—-1, even after the processes described in the previous section.

Mathematically, the decision procedure can be expressed
which is only related to the transfer function. If the condi- gs
tion x; =~ x;+1 does not hold, but the slope of the spectrum

changes slowly, the second finite difference can be used P(£lo) = P(§|0itd; 0iia, Ospe)
_ P(ogpelé; 0ita, 04ia) P(€]0ita; 0iia)
Oi = Di+1 - DZ (13) - P(Osp6|0itd7 Oi’id)
R Fiyz = 2Fi1 — I i=1LN-1 _ P(0ypel€) P(04ial€, 0ita) P(Elogta)  (14)
The assumptions for (12) and (13) are valid for some P(0spe) P(oiid|0ita)
most often observed signals, such as speech. It is mainly _ Plospel€) P(oiial§) P(0iral)P(E)
due to the applying of the cochlear filterbank. The cochlear P(ospe) P(0iia)  P(0ita)

filterbank intends to distribute the energy equally among its where P(¢|o) is the probability of the source locatest

sub-bands for the most observed signals. The spectral CUeiven the observation; P(0,/4/€), P(04:4|¢) andP (0.4 |€)
y it ’ i spe

g?gnbee ?;:‘Znglﬁﬁ:gig E)y uso'vr:lgrssveeézlu:]air:teesn('jnf;esedare the observation probabilities for ITDs, IIDs and spec-
' 9p P tral cues given the source location, aR) is thea priori

morl\el fIat,hwhlch mak(re]s_ thellalssg-r]‘crflptmns mr?;a \I:a“d. kas’ information. The simplification of the expression is base
ote this approacnis a |Fte : grentwn aKarausxass ,, yhq independence assumption between localization cues.
approach, where filterbank is applied before the calculation The decision rule therefore is

of intensities [4]. In Zakarauskas’s approach, (10) only ap-
proximately holds by assuming the local spectrumis rela- & = argmgax P(&lo)

tively flat. Here, the relation holds exactly without any as- (15)
sumption, therefore results in more accurate [IDs and spec- = a8 m?X{P(Ospe|€)P(0iz’d|€)P(0¢td|€)P(€)}-

tral cues estimation. The comparison between the two meth-

ods will be provided in the simulations. It should be noticed from Fig. 2 that the finally decision

of the source location could also be made at the second step.
As we already knew that the ITDs and IIDs can provide dis-
crimination for most of the locations except for the median
plane, and they are more robust than spectral cues. There-
fore, the spectral cues are only used for locating sources in

3. DECISION MAKING

ITD IID Spectral Cues i N 8
l ¢ ¢ the median plane, where ITDs and IIDs provide no informa-
, tion.
aprori | > Cangfjtes »| Decision In order to apply this decision making procedure, the 3D
Decision space need to be divided into regions according to the eleva-
v ! tion and azimuth. For each individual region, the true ITDs,
Elev, Azim Elev, Azim IIDs and spectral cues are found either through HRTF mea-

surement, if it is available, or throught training, for most of
Fig. 2. Bayes-rule based hierarchical decision making.  the cases. During the training, ITDs, IIDs and spectral cues
are the averages across the time from the training tokens.
A Bayes-rule based hierarchical decision making ap- Donate the feature spaces of 1IDs, spectral cues for the
proach is employed. It is shown in Fig. 2. The location left and right channel as
probability is first calculated by ITDs and thgoriori infor-
mation. This probability servers as theriori for the sec- E=[Er, By, En]
ond step, where the location probability is refined by IIDs. C1=[Ci1,Ci2, -+, Cim] (16)
The refined probability is in turn served as theriori for C. =1[Cr1,Cra, -, Craal,
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whereE; is the IID, andCy;/C,; is the 2nd order difference
for each sub-band as discribed in the previous section.

The cosine distance is applied for the similarity mea-
surement, take the IIDs as an example

Table 1. Localization Error percentages for different
schemes

[ Data [ DIR [ TRA | TOG | MFCC | MON |
_<EE> a7 COM] 00] 00 [ 0.4 [ 06 | 200

E[E] CNN [ 00] 00 | 22 | 59 | 376
ASE || 04 | 0.7 | 2.6 | 104 | 387

835)

where <, > denotes inner producl} - || denotes the 2nd
order norm andt is true ID.

aural cues, ITDs and IIDs, and a monoaural cue, the spectral
4. SIMULATIONS cues, to localize a souce in a 3D space. Preliminary simula-
tion results show the effectiveness of the algorithm.
Simulations are conducted using pre-measured HRTF and  Further research will be conducted on the effect of noises
pre-recorded audio data. The HRTF is measured by Gard-and reverberations, and the building of thgriori by com-
ner and Martin in MIT Media Laboratory [9]. Three data bining source location history and inputs from other modal-
sets are used in simulations, commands (COM), cnn (CNN) ities, such as vision.
and authentic sound effects (ASE). The COM data set con-
tains 16 commands, such as "back”, "close”, ”ope_n”, etc. 6. REFERENCES
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