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ABSTRACT

In this paper, we consider the problem of blind source sepa-
ration (BSS) applied to speech signals. Due to reverberation, BSS
in the time domain is usually expensive in terms of computations.
We propose in this paper a subband BSS system based on the use
of adaptive feedback de-mixing networks in an oversampled uni-
form DFT filter bank structure. We show that the computational
cost can be significantly decreased if BSS is carried out in sub-
bands due to the possibility of reducing the sampling rate. Ex-
periments with real speech signals, conducted with two-input two-
output BSS systems using oversampled 32-subband and fullband
adaptation, indicate that separation quality and distortion are sim-
ilar for both systems. However, the proposed subband system is
more than 10 times computationally faster than the fullband one.

1. INTRODUCTION

Blind source separation (BSS) attempts to recover a set of sources
from a set of mixtures, without knowing the physical realization of
the original sources, and how they were mixed in the first place. In
this work, we are mainly interested in convolutive speech separa-
tion, where the aim is to isolate multiple speech sources captured
by two or more microphones in a reverberant room. However,
most of the ideas exposed here can easily be extended to other
types of signals and convolutive situations as well.

Many BSS algorithms operating in the time domain have been
proposed that can be applied to convolutive speech mixtures, e.g.
see [1], [2]. Unfortunately, these algorithms are characterized by
heavy computational requirements. A popular approach to reduce
the computational burden consists in carrying out separation in
the frequency domain [3]. Frequency domain BSS is attractive
because each frequency bin corresponds to an instantaneous BSS
problem. Moreover, combined with efficient block FFT process-
ing, a computationally fast BSS algorithm can be derived.

Nevertheless, frequency domain BSS has its own drawbacks.
Due to the difficulty in calculating the inverse of the room transfer
function both for the desired and interfering signals [4], frequency
domain BSS may fail to separate mixtures when the direct path is
weak. Another problem is that for each frequency bin, the recov-
ered sources may be permuted and must be reordered before the
fullband signal is reconstructed, a difficult task [3]. Finally, block
processing with FFT may introduce unacceptable delays in certain
applications.

In this paper, we investigate a novel BSS system based on the
subband realization of the adaptive feedback de-mixing network
in [2]. The computational efficiency of this approach results from
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the possibility of reducing the sampling rate within each subband.
To avoid decimation aliasing effects, the proposed system uses
flexible oversampled uniform DFT filter banks that allow arbitrary
oversampling, low complexity of implementation and low process-
ing delay. The proposed subband BSS approach is evaluated with
real speech signals recorded in a reverberant room in the case of
a two-input two-output mixing situation. One particular realiza-
tion of the subband BSS approach using 32 subbands is shown to
run more than 10 times faster than its fullband counterpart without
any noticeable loss in separation and distortion performance. Fur-
thermore, the subband implementation is not affected by the above
mentioned limitations of frequency domain BSS.

2. BACKGROUND

Let us consider the situation where N persons are speaking in a
room, with respective speech signals s;(n),1 < ¢ < N, where
n denotes discrete-time index. After propagation within the room,
these signals are captured by N microphones, which pick up mix-
tures of those speakers, denoted z;(n),1 < ¢ < N. The goal
of BSS is to recover the source signals by processing all available
mixtures. The resulting signals are denoted y;(n),1 <i < N.

In the time domain, it has been proposed to use a feedback
de-mixing network for BSS of speech mixtures [2], as illustrated
in Fig. 1 for a two-input two-output network. The output of the
network can be expressed as follows:

yi(n) = zi(n) + 3 why; (), &)
J#i

where y;(n) = [y;(n),...,y;(n — L + 1)]" and w;; € R”
represents an FIR filter of length L. The coefficients of w;; can be
updated using a steepest descent approach. As shown in [2], the
update equation is

wij(n+ 1) = wi;(n) — psign(yi(n)) y; (n), )
where g > 0 is a step size.

z1(n) —=(+ y1(n)

za(n) + o= y2(n)

Fig. 1. Feedback convolutive de-mixing network for a two-input
two-output system.

The time domain BSS algorithm described above is expensive
in terms of computations. Indeed, for an N x N mixing network

ICASSP 2003




(i.e. NV sources and N microphones), it requires 2NV (N — 1) L real
multiplications per time iteration. For the algorithm to operate
adequately, the value of L must be comparable with the reverber-
ation time of the acoustic enclosure (in samples). For example,
in the application of BSS to speech mixtures recorded in a room
with a small reverberation time of 50 ms at a basic sampling rate of
11 kHz, the required value of L is of the order of 550. For applica-
tions within enclosures with large reverberation times and higher
sampling rate (e.g. high-quality audio), the required value of L
may be significantly larger. Clearly, the computational complexity
of O(N?L) required by the time-domain BSS algorithm (1)—(2)
might be too high for practical real-time BSS processing.

In this work, we propose a subband-based BSS algorithm which
lowers the computational complexity. As detailed in Sec. 3 and 4,
the processing time can be significantly reduced by using subband
instead of time-domain separation.

3. DFT FILTER BANKSFOR BSS

The proposed subband realization of BSS using oversampled uni-
form filter banks is illustrated in Fig. 2. Its operation is further
described below.

In this approach, each microphone signal z;(n) ¢ = 1,..., N)
is separated into K subbands by means of digital filters hy, each
of them corresponding to a certain frequency range of equal width.
Since the bandwidth of the signal in each subband is now reduced,
the sampling rate can be lowered by a factor M < K, resulting
in the subband microphone signal zx;(m) (k = 1,..., K), where
m denotes discrete-time index at the reduced sampling rate. The
mixtures are then independently separated in each subband using
a separate adaptive BSS algorithm operating at the reduced sam-
pling rate. After the separation, the processed signals yx;(m) are
digitally interpolated by a factor M and filtered by g, so that their
sampling rate is restored at its original value. The signals com-
ing from the different subbands that belong to the same source
are finally added together to reconstruct the fullband signal y;(n),
which provides an approximation to the -th speech source.

Subband
BSS

Analysis banks Synthesis banks

Fig. 2. A subband-based BSS system.

Filter bank requirements in the subband BSS application under
study differ significantly from those commonly found in subband
coding applications. Due to the presence of the separation network
structure between the analysis and synthesis banks in Fig. 2, using
critically sampled filter banks (M = K) would produce aliased
audio components which are difficult to filter out [5]. For this rea-
son, we propose to use oversampling (i.e. M < K) in subband
to keep aliasing distortion in the fullband outputs of the synthe-
sis banks below an acceptable level. The decimation factor M
should be set to a value compatible with audio applications, while
attempting to preserve computational efficiency of the subband ap-
proach. We also note that the perfect reconstruction property (PR)

is not essential in subband BSS, as long as the reconstruction errors
are inaudible. Accordingly, only a near-PR property is required for
the analysis/synthesis banks.

In this work, we use modified uniform DFT filter banks, as de-
scribed in [6], for the realization of the analysis/synthesis banks in
Fig. 2. This approach has proved to be effective in the application
of subband acoustic echo cancellation, where the filter bank re-
quirements are similar to those described above. The operation
of the DFT filter banks is illustrated in Fig. 3. In the analysis
bank (top), the spectrum of the signal in subband k& is shifted by
2m(k — 1)/ K to the left using a complex modulation. After mod-
ulation, the signal is filtered with A(n), an FIR low-pass prototype
filter of length D with cutoff frequency «/ K, and then decimated
by a factor M. In the synthesis bank (bottom), the signal in each
subband is upsampled by M, and filtered by the synthesis proto-
type low-pass filter g(n), also characterized by a length D and a
cutoff frequency of 7 /K. After filtering, the subband signals are
properly demodulated and added together so that a fullband signal
is obtained.

:W;(k—l)n
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wi () et Mo g(n) (5 i (1)

(b) Synthesis bank.
Fig. 3. DFT filter banks (for analysis and synthesis).

The analysis prototype filter h(n) is designed according to the
procedure described in [6], which amounts to interpolate the im-
pulse response of a tabulated quadrature mirror filter (QMF) by
a factor of K/2. To eliminate phase distortion, the filter length
D is constrained to be a multiple of the number of subband, K,
and the synthesis prototype filter g(n) is chosen such that g(n) =
h(D-n—-1),n=0,...,D —1.

If one implements the DFT filter bank straightforwardly as il-
lustrated in Fig. 3, the overhead generated by subband analysis
and synthesis can become expensive, considering that IV pairs of
analysis/synthesis banks are needed in the present subband BSS
application. The weighted overlap-add (WOA) method [7] pro-
vides a more efficient realization. The WOA method interprets the
DFT filter bank as a block transform, and uses the FFT to optimize
the computations. The WOA method is fully described in [7], and
its specialization to the above modified uniform DFT filter banks
is considered in [6].

4. BSSUSING COMPLEX SUBBAND ADAPTATION

Consider the subband realization of BSS using oversampled DFT
filter banks, as illustrated in Fig. 2. In this work, we investigate
the use of adaptive feedback de-mixing networks to separate the
sources in each subband.

The basic feedback de-mixing network was described by (1)-
(2) and illustrated in Fig. 1 for the case of for real fullband signals.
Here, due to the use of complex modulation in the filter banks, the
input signals in each subband, i.e. zx;(m), now becomes complex
valued (except for subband 1 and K/2 + 1). Therefore, besides
trivial changes in notation to accommodate subband index k£ and a

V-514




different discrete-time index m, further modifications are needed
in the feedback de-mixing network equations (1)—(2) before they
may be applied to complex subband signals.

To simplify the notation, let y,, = [yri(m),. .., yri(m —
L+ 1)]", ars; = wyhj, and bg;; = wy,;, where superscript T
denotes matrix transposition and superscripts R and I denote the
real and imaginary parts, respectively. Hence, the output of the
feedback de-mixing network can be written as follows:

Yis(m) = wiz(m) + Z(alfijy?j (m) + b/?ijyij(m))v 3
J#i

Yii(m) = zi(m) + Z(alzijyij (m) — bgijykRj(m))' )]
G

According to [1], the cost function for BSS using a feedback
de-mixing network, denoted ¢, is given by

¢ = logpi(yi(n)), ©)

i=1

where p;(-) is the hypothesized pdf of source 4, corresponding to
real-valued baseband speech. In recent work, a Laplacian distribu-
tion is often used for the baseband speech samples [2]. To handle
the case of a complex valued subband speech source, we must in-
troduce an alternative pdf in the cost function (5) that is defined
over the complex plane and properly represents the statistics of the
source samples.

Through statistical analysis of experimentally collected sub-
band speech samples at the output of the DFT analysis banks, we
have been able to verify that the phase of subband speech is uni-
formly distributed. This can be justified from the central limit the-
orem on the basis of the complex modulation and FIR filtering
involved in the subband decomposition (see Fig. 3(a)). Hence, the
proposed pdf should only depend on the magnitude of the complex
random variable.

The experimental magnitude distribution of subband speech is
illustrated in Fig. 4. Points on this figure were generated by com-
puting the histogram of the magnitude of subband speech samples
using narrow bins. Also shown in Fig. 4 is the Gamma distribution
I'(«, 2) with parameter o = 125 adjusted to match the distribution
of the experimental data. It can be seen that the Gamma distribu-
tion provides a reasonable fit to the collected data, although a more
accurate model could be found. However, the Gamma distribution
leads to a simple form of the weight update equation when used in
connection with the cost function (5), and the resulting algorithm
exhibits a performance similar to that of fullband BSS (see Sec. 5).

Therefore, a suitable model for BSS of complex subband speech
is proposed as follows:

(o), va(m) = 5 e~V CET 6L

where « is a positive constant for normalization purposes. We
shall refer to the above as a complex Laplacian pdf.

Substituting (6), the pdf of subband speech, in (5) yields the
following cost function

#=-a) VEERm) + Ghm) +e 0

Distribution

Fig. 4. Experimentally observed magnitude distribution of band-
pass speech samples taken from subband 4 of a 16-subband filter
bank versus a Gamma pdf.

where ¢ is a constant. Note that the above cost function is real val-
ued, but the filter coefficients to adapt are complex valued. Maxi-
mization of the cost function can be done using a complex gradient
operator, commonly defined as

1 8¢ . 9¢

8akij

Applying definition (8) to (7) results in the following expression
for its gradient:

a yri(m)

— S T Y ©)
2 [Jyri (m)|| 7

Hence, using a feedback network, the complex coefficients of the

separating filters can be updated with the following stochastic gra-
dient algorithm

V¢ =

wgii(m 1=wi-m—M . 10
where g = p' /2 > 0 is the step size.

Note that since the sampling rate has been reduced by a factor
of M in the subband, the number of taps we would use for fullband
adaptation, L, can now be set to L/M for subband adaptation.
This way, the same physical time span is covered by the subband
and fullband adaptive BSS filters. Also note that due to the real
nature of the microphone signals in this applications, subband sig-
nals zx;(m) = xxr;(m), where ¥’ = K + 1 — k. Therefore, BSS
processing needs only be applied in subband 1 to K/2 + 1.

The computational complexity of the subband BSS system can
be evaluated by counting the number of required multiplications
per time iteration at the high sampling rate, assuming an N x N
mixing network. If we take into account the savings resulting
from the symmetry in the subband signals, as well as the over-
head generated by the filter banks, the number of real multiplica-
tions per iteration for a system using a WOA realization can be
found in Tab. 1. A computational gain +y is defined by considering
the amount of computations needed for fullband adaptation versus
subband adaptation:

M

2 M? 2 D -t
"=3x '3 oL (E+l°g2K>] (12)
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Real multiplications
WOA  2N(D + Klog, K)/M
Output generation  [2N(N — 1)LK]/M?
Weight update  [N(N —1)LK]/M”

Table 1. Number of real multiplications per iteration (at the high
sampling rate) for subband BSS.

5. EXPERIMENTAL RESULTS

Schobben et al. proposed in [8] the following evaluation method
for BSS systems. The idea is to record the sources in a real-world
environment, while letting only one of them active at a time. The
mixtures are then obtained by adding all contributions together, i.e.

N
zi(n) =Y &;(n), i=1,...,N, (12)
j=1

where &; ; (n) denotes the contribution of speaker j to microphone
i. Similarly, n;,; (n) denotes the recovered source ¢ when speaker
7 isactive. Separation quality is given by the following power ratio

in decibels
2
S; = 101log (M) , (13)
E [Ei#i U (n)]

and distortion can be measured using

1010 B[(&i,i(n) — Miyi(n — d))?]
D =10leg ( EIE2,(n)] ) 49

where \; = E[¢7;(n)]/E[y; (n)], and d is a delay introduced by
the BSS system.

We have tested the performance of the subband and fullband
BSS systems for a two-input two-output mixing network. Speech
signals for these tests were recorded with two omni-directional mi-
crophones in a small office room. The microphone outputs were
sampled at 11 kHz using 16-bit precision. Results, obtained for
three different sets of speaker positions labelled a, b and ¢, are
summarized in Tab. 2. The strongest direct path is obtained in
Position a, whereas the strongest cross-talk can be found in Posi-
tion ¢. Position b offers a stronger cross-talk than a, but weaker
than c¢. Two numbers, separated by a */’, are given for each entry.
These numbers correspond to the first and second source. The per-
formance rates reported in Tab. 2 were computed after 8 iterations
(i.e. each set of files was processed 8 times). The step size p was
setto1 x 1075 and to 5 x 10~ for the fullband and subband sys-
tem, respectively. The prototype filter for the K = 32 subbands
system was obtained by interpolating a QMF 12A (tabulated in [7])
by a factor of 16 (thus D = 192), and the downsampling factor M
was set to 24. The choice of M = 24 was justified experimentally
by varying M and looking at the various distortion measures D;.
M = 24 was the highest M that produces a low distortion output.

We may note from Tab. 2 that the position of the speakers rel-
ative to the microphones has a direct influence on the performance
rates. Better separation and lower distortion are obtained when
the direct path is strong, and cross-talk is weak. Furthermore, both
BSS systems exhibit about the same performance. Permutations of
the recovered sources, a noticeable problem with FFT based fre-
quency domain BSS, were not observed in our experiments with
subband BSS.

Pos. Fullband BSS 32-subband BSS

: a 8.37/6.33 9.51/7.90
(Sdeg;"ra“"” b 6.73/3.82 8.41/4.73
¢ 6.08/4.28 6.34/6.17

— a -8.02/-6.35 ~8.64/-7.00
(%';t)o”"’” b -6.92/-4.44 -7.95/-4.92
¢ -6.31/-4.74 -5.60/-5.13

Table 2. Performance of BSS systems (L = 1152).

Computational complexity is given in Tab. 3. These results
represent the average processing time (one iteration) of 10-second
speech files, and were obtained with the same parameters used to
generate the results in Tab. 2. A Pentium 3 processor clocked at
933 MHz was used to carry out the computations. Gains in terms
of processing times with respect to the fullband system are also
given. The theoretical gain + is obtained according to (11).

Time (s) Real gain ¥
Fullband BSS 60.1 - -
32-subband BSS 5.4 11.1 10.4

Table 3. Computational speed and time gains.

The 32-subband BSS system with WOA realization is about
11 times faster than the corresponding fullband system. Hence, the
goal of reducing the number of computations is reached, without a
significant impact on the separation and distortion rates.
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