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ABSTRACT

The noise reduction performance of the Generalized Sidelobe Can-
celler (GSC) depends on the validity of a priori assumptions about
the signal model, whereas the recently developed Multi-channel
Wiener Filter (MWF) techniques do not, hence, their potential
benefit. However, both techniques rely on a speech detection al-
gorithm. In this paper, we analyze the average effect of speech
detection errors on the performance of the GSC and MWF both
theoretically and experimentally. It is shown that the MWF pre-
serves its benefit over the GSC for a reasonable speech detection
error rate of 20% or less, even when the GSC is supplied with a
robustness constraint.

1. INTRODUCTION

In speech communication applications, such as handsfree tele-
phony and hearing aids, background noise reduces the intelligi-
bility of the desired speech seriously, making a noise reduction
algorithm necessary. Multi-microphone systems exploit spatial in-
formation in addition to temporal and spectral information of the
desired and noise signal and are thus preferred to single micro-
phone approaches.

Recently, Multi-channel Wiener Filtering (MWF) techniques
have been proposed that provide a Minimum Mean Square Error
(MMSE) estimate of the desired signal portion in one of the re-
ceived microphone signals [1, 2, 3]. In contrast to the GSC [4],
they do not make any a priori assumptions about the signal model
(such as microphone characteristics, speaker and microphone po-
sitions, reverberation, ...) so that no robustness constraint [5, 6] is
needed to guarantee its performance when applied in small-sized
arrays [7]. Especially in complicated noise scenarios, the MWF
outperforms the GSC with robustness constraint [7].

The MWF is uniquely based on estimates of the second order
statistics of the speech and the noise. Both the MWF and the GSC
need a robust speech detection to determine periods of noise only.
Since the MWF does not require any other a priori information, the
reliance on the speech detection is expected to be crucial to achieve
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the potentially better performance. In this paper, we analyze the
average effect of speech detection errors on the performance of the
MWEF both theoretically and experimentally and compare it with
the GSC (with and without robustness constraint). In the simula-
tions and experiments, we focus on the harsh case of small-sized
arrays as used in hearing aid applications.

Notation

In the sequel, signals and filters will be represented in the fre-
quency domain. The microphone signals are Xi(f), k =
1, ..., M with M the number of microphones. The Power Spec-
tral Density (PSD) of signal X (f) is Px (f), the cross-PSD be-
tween signals X (f) and Y'(f) is Pxy(f) = E{X (/)Y ()}
Where needed, the superscripts s and n are used to refer to the
contribution of the speech and noise signal only. The noise signal
consists of external noise (superscript e) and internal noise (super-
script ¢) e.g. sensor noise, modelled as spatially white noise. We
assume the PSD of the received speech, Px (f), the received noise,
P%(f) = P%(f)+ P%(f), the internal and external noise Pk (f)
and P (f), and the received microphone signals Px (f) to be the
same at each microphone.

2. MULTI-CHANNEL WIENER FILTER (MWF)

2.1. Concept

The MWE W (f) € CM>*! (with Wy (f) the k-th entry of W (f))
provides a MMSE estimate of the (unknown) speech signal X (f)
at the k-th (e.g. first) microphone', which is computed as Yo (f) =
WT(f)X(f), i.e. the sum of the M filtered microphone signals,
where? [7]

X(f)=[ X(f) Xa(f)

—1 s
Px Px,x, -+ PXMX1 Px
S
Px,x, Px Pxx, Px, x,

W= o o

Xu(f) 15

Px,x, -+ -+ Px P%. xus
Assuming that the speech and noise signals are uncorrelated,
P, x,(f) is estimated as

Pxox,(f) = Px,x, (f) = Px, x,(f), (©)
with Py, x, (f) and P%, x, (f) estimated during periods of speech
+ noise and periods of noise only, respectively. The second order
statistics of the noise are assumed to be sufficiently stationary so
that they can be estimated during periods of noise only. Like for

'In the sequel, we assume without loss of generality that the first mi-
crophone signal is estimated.
2The parameter f is often omitted for the sake of conciseness.
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the GSC, a robust speech detection is thus needed.

In [1], the MWF is implemented in the time-domain by means
of a Generalized Singular Value Decomposition (GSVD) of an in-
put and noise data matrix. Cheaper alternatives based on a QR
Decomposition and/or a subband implementation have been pro-
posed in [2, 3]. In contrast to the GSC, the MWF does not make
any a priori assumptions about the signal model so it is more robust
to small signal model errors [1, 7].

2.2. Theoretical performance

2.2.1. Power transfer functions G™(f) and G*(f)

The theoretical performance (i.e. assuming infinite filter lengths)
of the MWF W(f), i.e. the Power Transfer Function (PTF) of
the noise signal G"(f) = Py (f)/P%(f) and the desired speech
signal G*(f) = Py, (f)/Px(f), can be expressed as a function
of the so-called complex coherence T'i;(f) between the k-th and
{-th microphone, defined as:

Px, x

T(f) = —xX 4

Using definition (4), W(f) can be rewritten as [7]:

1 Tor - Tan]7'[ 1
Pi(f) T2 1 Tare T2 s
PL((+ a(h) : @
Tiag -+ -+ 1 v
e (T3 +T PR()

o et T X
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with 1/c(f) the input SNR. The PTFs G (f) and G°(f) can be
easily expressed as a function of I'y;, I'y; and I'y; [7]:

amlE(f Z|Wk| +Z Z 2.Re{W W/ Ty, (7)
k=11=k+1
where G™!* means G™or G*, etc. (for compact notation).
Remark: Equations (5)-(7) assume that the microphones are
perfectly matched. Suppose that the k-th microphone has a gain
mismatch AY (f) and a phase mismatch A®(f) (in degrees) w.r.t.
microphone 1. The coherence functions T'}" (f) in (5)-(7) should
then be replaced by Fn‘s N

Bl = § ATNSIIEIE(S)  fork £ 1
M IAY ()T (f) fork =1.

2.2.2. Intelligibility weighted performance measures

To assess the effect of the obtained PTFs G°(f) and G™(f) on in-
telligibility - which is the major goal of a noise reduction algorithm
in applications as hearing aids -the improvement in intelligibility
weighted Signal-to-Noise Ratio (SNR) has been proposed [8]:

ASNRinelig = Z I;(SNR; out — SNR; in), )

(®)

with:
SNR’L out —

2% f¢ 26f°
101log;, /_l df/
275 f 2 sfc

26f‘ 26 rs
SNR; i = 101og,, / . PX df PR(f)df] , (11)
276 f ch

)G"(f)df ) (10)

where the band importance function I; expresses the importance
of the i-th one-third octave band with center frequency f; for in-
telligibility [9], and where SNR; o and SNR; ;», is the output and
input SNR (in dB) in the i-th one-third octave band, respectively.

Similarly, we define an intelligibility weighted spectral distor-
tion measure (in dB), called SDieliig, Of the desired signal as

SDincetig = »_ I:SD, (12)

with SD; the average spectral distortion (in dB) in the i-the one-
third octave band, calculated as

SDi:/jfﬁ [1010g, G*(F)] df/ [(28 —27%) 1] (13)

3
3. SENSITIVITY TO SPEECH DETECTION ERRORS

Based on the formulas derived in Section 2.2, we can predict the
average effect of speech detection errors on the MWE.

3.1. Multi-channel Wiener filtering

3.1.1. Speech + noise being erroneously detected as noise only

In case of a perfect speech detection, (3) applies and the multi-
channel Wiener filter is given by (5). Suppose now that (6 x 100)%
of the noise only samples used to estimate Py, x,(f) actually
contain speech. Assuming that the average PSDs Px (f) of the
(6 x 100)% wrongly detected samples and the correctly detected

samples are the same’, the estimated cross-PSD P)’}k X, (f) equals
P%, x,(f) PY(f)Th + 6Px ()T
Px(f) (a(f)Tk +6Tk) (14)
with «(f) defined in (6). Using (3), the estimated cross-PSD
P%.. x, (f) becomes
P, x, (f) = Px(f)(L = &)L5u(f)- (15)
It can be shown with (2) and (15) that W (f) changes into
1 Dy oo Tan ] [ 1
Py(f)a—o) | Tz 1 T2 i2
PL(N)+P(f)] RV e
Tiag oo -+ 1 I

(16)

with T'y; and T}, the coherence functions in case of a perfect
speech detection.

Hence, the PTFs G*( f) and G™(f) are both scaled by (1 —6)2,
independently of the input SNR and the noise scenario. In prac-
tice, the average PSD Px (f) of the correctly and wrongly detected
samples will differ, resulting in a frequency dependent J(f) and
attenuation/distortion (see also footnote (3)), with an average ef-
fect as derived above. The SNR improvement G°(f)/G"(f) at
frequency f remains unchanged.

3.1.2. Noise being erroneously detected as speech + noise

A similar reasoning can be applied when (& x 100)% of the speech
+ noise samples used in the computation of Px, x,(f) and W(f)
actually contain noise only [10]. The estimate I:’Xk x,(f)and as a
consequence the estimate P}k x, (f) then become*

3In practice, the average PSDs P (f) can be different. This corre-
sponds to replacing & by a frequency dependent 6(f) = 4.F(f), where
F(f) is determined by the ratio of the average PSDs (see [10]).

“Here, § is f-independent, since the 2nd order statistics of the noise are
assumed to be stationary.
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Px, x,(f) P, (f) + (1= 8)Piux, (f) (D)
Piox,(f) = P(f)(1 =TS, (18)

so that W (f) equals

1 Top - 1?]%1 - 1
Pi(f) T'ia 1 Tara2 T2 (19)
P +alf)| - R Sl
flhf e e 1 F‘i]w

where A()TD, 4+ T3 )

~ o o

sz(f):Hkié(f)kl, &(f)=m~ (20)
The MWF acts as if the input SNR 1/a(f) is reduced by a factor
1/(1 — §). As a consequence, the filter will pay more attention to
noise reduction than to speech distortion, so that the speech signal
is attenuated more than in case of a perfect speech detection. For
an excessive error rate (§ x 100%) = 50%, the effect corresponds
to a decrease in input SNR of only 3 dB, so that the effect of noise
detected as speech + noise is found to be limited [10]. Hence, the
MWEF is especially affected when speech + noise is detected as
noise only.

3.2. Comparison with GSC

In this section, we compare the theoretical performance of the
MWEF in case of an erroneous speech detection to the performance
of the GSC with(out) robustness constraint. The results are illus-
trated for a small-sized uniform 4-microphone endfire array with
microphone interspacing d = 2 cm. The desired signal is assumed
to be in front of the microphone array at § = 0°.

3.2.1. Theoretical performance GSC

The GSC [4] consists of a fixed beamformer A € CM*! which
creates a speech reference Yo (f), a blocking matrix B € ¢V *M,
which creates N noise references Y;(f), ¢ = 1, ..., N, and an
Adaptive Noise Canceller (ANC). A delay-and-sum beamformer

. d; —d
isused, i.e. A;(f) = ﬁeﬂﬂf i

, and the matrix B is set to

1 e BT 0 0
B=|1 0 _i2m s T 0 @D
1 0 0 _ed2m Tt

If B is a perfect blocking matrix, the GSC is roughly independent
of speech detection. In practice however, the a priori assumptions
of the GSC are seldom fulfilled. To avoid possible cancellation
of the speech, the ANC is adapted during periods of noise only.
Hence, the GSC is -apart from a reduced convergence rate- not
affected when noise only samples are detected as speech + noise.
The PTFs G°(f), G™(f) of the GSC as a function of I'};, I'y; and
the percentage (§ X 100%) of speech + noise samples detected as
noise only, can be obtained in a similar manner as in Section 2.2

and Section 3.1:
M M

G (f) = | PR AcAT® QZRe{P;';k 0}
k=1 1=1
N N
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Fig. 1. Theoretical performance ((a) ASNRinetig; (b) SDineetiig) Of
GSC (with(out) robustness constraint) and MWF, when (§ x 100)%
of the noise samples used to compute the filters actually contain
speech. Two input SNRs 1/a(f) are depicted: «(f) = 0 dB
(dashed-dotted lines) and o(f) = —6 dB (dotted lines).
M M

(OIS ABITE(f), @4

k=11=1

PySL(f) = PRE(f

and W (f) equals
—1

Py y, +6Pyy, Py v, + 0Py v, Py y,
Pyy, +0PY )y, - Py y, 0Py, v, Py v,

For the derivation, we refer to [10].

When used in combination with small-sized arrays, e.g. in hear-
ing aid applications, an additional robustness constraint on the
ANC of the GSC [5, 6] is required to guarantee performance in the
presence of small signal model errors [7]. In [6], this constraint
is imposed by inserting uncorrelated noise in the microphone sig-
nals used to design W ( f). This constraint can be easily taken into
account by replacing I'7; (f) in the computation of W ( f) by

ki (f) +n(f)olk 1], (26)
where n(f) is the ratio of the injected noise power to the input
noise power P% (f) [10].

3.2.2. Simulation results

The simulations are illustrated for a diffuse noise field with

internal-to-external noise ratio 3(f) = P%(f)/P%(f) =

—30 dB. Typical values for 3( f) lie between —20 dB and —40 dB.

The coherence I'};; of this noise field equals
T (f) = sin(27 f(di — di)/c)

. (1+ B())2r f(dx — di)/c
with dx —d; the interspacing between the k-th and [-th microphone
and c the velocity of sound in air (¢ ~ 340 m/s). The coherence
function I';; () of the localized speech signal equals

FZl(f) _ efj27rfc059(dk7dl)/c. (28)
Since in practice, the desired and interfering signals are often
speech-like, ASNRinenig is computed using a model of the aver-
age long-term speech PSD for Px (f) and P%(f). In the simu-
lations, the 2nd and 3rd microphone have a small gain mismatch
AT of 1 dB and —1 dB w.r.t. the first microphone. In [11], gain
and phase differences of up to 6 dB and 10°, respectively, have
been reported. In addition, the microphone characteristics may
drift over time, making perfect calibration practically impossible.

fork #1, (27)
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Figure 1 depicts the impact of speech detection errors on
ASNRineeniig and SDineenig obtained by the GSC and the MWF, when
8 x 100%" of the noise samples used to compute the filters actu-
ally contain speech. Two input SNRs 1/a(f), i.e. a(f) = 0dB
and o f) = —6 dB are considered. The performance of the GSC
with robustness constraint is depicted too for a noise injection ratio
n(f) = —10 dB. This ratio has been found to provide sufficient
robustness against gain mismatches AY up to £3 dB and phase
mismatches A® up to £6° for the given microphone array and the
given noise scenario [7]. For larger model errors, a more severe
constraint is needed, at the expense of less noise reduction [7].

In addition to increasing robustness to model errors [5, 7], the
robustness constraint reduces the drastic impact of speech detec-
tion errors on the GSC, especially at high input SNR 1/«(f). The
MWEF additionally distorts the speech by 10 log,,(1— &) but con-
serves the improvement ASNRinenig if speech + noise is detected
as noise only. In contrast to the GSC, this additional distortion
(i.e. 10log(1 — §)?), is independent of the input SNR. Compared
to the GSC with robustness constraint, the speech signal is attenu-
ated more, especially for large §. For error rates § x 100% up to
20%, the distortion is limited, while more noise is reduced.

4. VALIDATION THROUGH EXPERIMENTAL RESULTS

In this section, we verify the conclusions of Section 3.2 based on
real recordings for a diffuse noise field. A uniform endfire array
with 4 microphones (Knowles EM-4368) and d = 0.02 m has
been mounted on a dummy head in an office room with reverber-
ation time Tgoqs ~ 700 ms for a speech weighted noise. The
desired source is positioned at a distance of 1 meter in front of the
head. The speech and noise signal are uncorrelated, stationary and
speech-like. The external noise signal has a level of about 70 dB
SPL at the center of the head. Since the microphones have an in-
ternal noise level of about 25 — 28 dB SPL and the external noise
is speech-like, 3(f) is smaller than —30 dB at low f. The level
of the speech signal is adjusted so that the input SNR at the first
microphone equals 0 dB. During the first 5 seconds only noise is
present, during the last 5 seconds the speech and noise signal are
both present. In the experiments, the subband GSVD based algo-
rithm is used [3] and the fixed beamformer in the GSC has been
optimized (using a free field signal coming from 0°) for the 4-
microphone array used . A gain deviation of 1 dB and —1 dB has
been applied to the 2nd and 3rd microphone.

Figure 2 shows the performance of the GSC (withn = —oco dB
and 7 = —10 dB, respectively) and the MWF when (§ x 100)%
of the noise samples used to compute the filters, actually contain
speech. The results are well predicted by Figure 1. Compared to
Figure 1, less noise is reduced due to the presence of reverbera-
tion. In addition, 3(f) < —30 dB at low f results in a larger
distortion by the GSC at § = 0. The improvement ASNRjpniig Of
the MWF is (again) hardly affected by erroneous speech detection,
while SDinenig increases with 10 log, (1 — 6)2.

In conclusion, for a reasonable speech detection error rate of
20% or less, the MWF outperforms the GSC, even when the latter
is supplied with a robustness constraint.
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