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ABSTRACT

Thispaperinvestigatestheuseof microphonearraysto acquireand
recognisespeechin meetings.Meetingsposeseveral interesting
problemsfor speechprocessing,asthey consistof multiple com-
petingspeakerswithin asmallspace,typically aroundatable.Due
to their ability to provide hands-freeacquisitionand directional
discrimination,microphonearrayspresenta potentialalternative
to close-talkingmicrophonesin suchanapplication.We first pro-
poseanappropriatemicrophonearraygeometryandimprovedpro-
cessingtechniquefor this scenario,payingparticularattentionto
speaker separationduringpossibleoverlapsegments.Datacollec-
tion of a small vocabulary speechrecognitioncorpus(Numbers)
wasperformedin a real meetingroom for a singlespeaker, and
several overlappingspeechscenarios.In speechrecognitionex-
perimentson the acquireddatabase,the performanceof the mi-
crophonearraysystemis comparedto thatof a close-talkinglapel
microphone,anda singletable-topmicrophone.

1. INTRODUCTION

Meetingsareafundamentalhumanactivity, in whichspeech(along
with other modalities)is usedto shareand develop information
betweena groupof people. For this reason,meetingspresentan
importantapplicationdomainfor speechprocessingtechnologies.

Oneof the problemsthat arisesin meetingspeechis that of
multipleconcurrentspeakers.Overlappingspeechmayoccurwhen
someoneattemptsto take over the main discussion,whensome-
oneinterjectsa brief commentover the main speaker, or whena
separateconversationtakesplacein additionto the main discus-
sion. In [1] it wasidentifiedthataround10-15%of wordsor 50%
of speechsegmentsin a meetingor telephoneconversationcon-
tain somedegreeof overlappingspeech.Theseoverlappedspeech
segmentsareproblematicfor speechrecognition,producinganab-
soluteincreasein word errorrateof between15-30%usingclose-
talkingmicrophonesfor a largevocabulary task[1, 2].

In this paper, we investigatetheuseof amicrophonearrayfor
acquisitionof speechin meetings.Close-talkingmicrophonesare
usedin mostapplications,astheir proximity ensuresa high signal
level, andalsobecausethespeaker constitutesanacousticbarrier
that reducesroomreverberationeffects. Themajordisadvantage,
however, is thatmeetingparticipantsarerequiredto wearlapelor
head-mountedmicrophones.Microphonearraysoffer a potential
solutionto remove thisconstraint.

A microphonearray hasthe ability to discriminatebetween
multiplecompetingspeakersbasedon their location.Recentwork

hasshown thatmicrophonearrayscanprovide a viablealternative
to close-talkingmicrophonesfor single speaker speechrecogni-
tion in noisyenvironments[3, 4]. While therobustnessof micro-
phonearrayrecognitionsystemsto backgroundnoiseandgeneral
localisednoisesourceshasbeenestablished,asyet, no recogni-
tion resultshave beenpublishedinvestigatingtheperformanceof
anarraysystemin thepresenceof genuinecompetingspeech.

Thispapermakesseveralcontributions.Wefirst proposeami-
crophonearraysystemsuitablefor usein smallmeetings.For the
enhancement,we presenta simplificationof thepost-filteringap-
proachpresentedin [5], which incorporatesthe theoreticalnoise
field coherencein the post-filter estimation. In this framework,
we proposea coherencemodel that takes both the background
noiseand localisedspeakers into consideration. A geometryis
proposedandanalysedto show the theoreticaldiscriminationbe-
tweenspeaker locationsin a commonmeetingconfiguration.

Following this,wedescribethecollectionof experimentaldata
in arealmeetingroom.TheNumbersrecognitioncorpusis played
through loudspeakers for various single and competingspeaker
scenarios,and re-recordedon lapel, table-topand array micro-
phones.To addressthecurrentlack of multi-channelspeechcor-
pora,theresultingmulti-channeldatabaseis beingdistributed[6].
Speechrecognitionexperimentsare performedon the database,
comparingtheperformanceof theproposedarrayprocessingsys-
tem to that of the close-talkinglapel microphones,as well as a
singletable-topmicrophone.Theresultsdemonstrateboththatar-
rayspresenta viable alternative to close-talkingmicrophonesfor
singlespeakers,andthatthey canbesuccessfulin combattingthe
effectsof overlappingspeech.

2. MICROPHONE ARRAY SYSTEM

In this section,we presenta microphonearraysystemfor small
meetings,discussingboththeenhancementtechniqueaswell asa
suitablearraygeometry.

2.1. Enhancement Technique

A block diagramof the microphonearray processingsystemis
shown in Figure1. It includesa filter-sumbeamformerfollowed
by a post-filteringstage.

For the beamformer, we usethe superdirective techniqueto
calculatethechannelfilters ��� maximisingthearraygain,while
maintaininga minimum constrainton the white noisegain. This
techniqueis fully describedin [7].
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Fig. 1. Filter-sumbeamformerwith post-filter

For the post-filteringstage,we apply the post-filterproposed
in [5], with two modifications.This post-filteris a generalisation
of the standardZelinksi post-filter [8, 9] in that the assumption
of an incoherentnoisefield is replacedwith that of an assumed
noisefield coherencemodel.Thefirst modificationwe proposeis
to simplify theestimationproceduredescribedin [5]. Thesecond
modificationis to incorporatelocalisedcompetingspeakersin the
noisefield coherencemodel.

2.1.1. Post-filterEstimation

Useof a post-filterafter the beamformingstagehelpsto further
reducethe broadbandnoiseenergy [10]. The Wienerpost-filter
transferfunction is given by (omitting the frequency dependence
for simplicity) :

��� �������������� ���
where � ��� and � ��� arethesignalandnoisepower spectraldensi-
ties,respectively.

In [5] we proposeda techniquefor estimatinga microphone
arraypost-filterbasedonanassumednoisefield coherencemodel,� ��� . Theformulationrequiredthesolutionof aquadraticequation
to estimatethe signal power spectraldensity, � ��� . This hasthe
inconvenienceof needingto choosebetweendual solutions,and
alsoincreasedcomputationalcomplexity over thestandardZelin-
ski techniqueupon which it is based[8, 9]. Here we presenta
simplificationof theapproachto addresstheselimitations.

Following applicationof thetimealignment,andundertheas-
sumptionsof : thesamedesiredsignalcomponentacrosssensors
( ��������� � ����� ); nocorrelationbetweenthesignalandnoise( ��� � � 
); the samenoisepower spectrumon eachchannel( � � � � � �
� ��� ); anda known noisefield coherencemodel;we canwrite :

��!"�#!$� � ��������� � � � ���!"�%!"� � ��������� ���� � � � � � � � � � �� ���
where ��!"��!$� is thecrossspectraldensitybetweenmicrophones&
and ' . Fromtheseequations,weobtain

����� � � ! � ! ��( � � � � ��� ! � ! �) ( � � � � � (1)

As thecoherencecanvarybetween( )+* � ��� *,)
, theprob-

lem of division by zeroshouldbeavoidedby enforcinganupper
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Fig. 2. MeetingRoomConfiguration

boundon thecoherencevalues.Theestimatedsignalpower spec-
tral densitycanthenbeaveragedover all sensorpairsto give a ro-
bustestimationof theWienerpost-filternumerator. Thisapproach
differs from that in [5] by makingthe assumptionof samenoise
power spectraldensityon all sensors.The denominator( �����-�� ��� ) canbeestimatedby a similaraveragingof ��!"��!"� . As well as
having a singledirectsolution,theabove formulationgivesa sig-
nificantreductionin computationalcomplexity over thatproposed
in [5].

2.1.2. ProposedNoiseField CoherenceModel

The post-filter estimationrequiresa coherencemodel,
� ��� . In

thepreviouswork, a diffusenoisefield wasassumed,asit givesa
goodapproximationof anumberof practicalnoisesituations,such
asoffice noise. In the experimentsin this paperhowever, signif-
icantnoiseenergy comesfrom localisednoisesources,rendering
a purelydiffusenoisefield modelinappropriate.We thuspropose
usinga coherencematrixwhich is theweightedsumof thediffuse
noisecoherenceandthatof thelocalisednoisesources,asfollows
:

� � � � � � �/.0. sinc 1�2�354 . �6�798 �;:=<>6?A@ � >B> exp 1DCE2�354 . �F�7 8
�/.G.H�I: <>6?J@ � >B> (2)

where �/.G. is the componentof the noisepower due to the dif-
fusenoisefield, and � >B> thatdueto the KML%N localisednoisesource.
Thesecomponentsare not normally known in advance,and in
practice,hand-adjusted,frequency-independentvaluescanbeused
to achieve a compromisebetweendiffuseandlocalisednoisere-
duction.

2.2. Array Geometry

In thispaper, weinvestigateascenariowherefourpeopleareequally
spacedarounda small meetingtable. To give uniform discrimi-
nationover all possiblespeaker locations,we proposea circular
array at the centreof the table. In particular, we use8 equally
spacedomnidirectionalmicrophones,with diameter20 cm. This
configurationis shown in Figure2.

Figure3 shows thedirectivity patternsfor thebeamformerat
100 Hz and1000Hz usingthe proposedgeometry. The patterns
in all four speaker directionsare superimposed,with speaker 1
shown in bold. From3 (a)weseethat,despitepoorlow frequencey
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Fig. 3. Directivity patternsat 100Hz and1000Hz (speaker 1 in
bold)

directivity, thetheoreticalarrayattenuatesthecompetingspeakers
to approximately30%of thelevel of thedesiredspeaker. As seen
in Figure3 (b), thisdiscriminationimprovesathigherfrequencies,
with nullsdevelopingin thedirectionof competingspeakers.

3. DATA COLLECTION

Therearecurrentlyno publicly availablecorporasuitablefor mi-
crophonearrayspeechrecognitionresearch.Therefore,the initial
focusof this work wasto generatea multi-microphonecorpusfor
experimentationandpublicdistribution.

Thedatabasewascollectedby outputtingutterancesfrom the
Numberscorpus(telephonequality speech,30-word vocabulary)
on oneor more loudspeakers, andrecordingthe resultingsound
field usinga microphonearrayandvariouslapelandtable-topmi-
crophones.Thegoalof this work wasto comparerelative speech
recognitionperformanceusingdifferentmicrophoneconfigurations
in variousnoisesituations,andthusasmallvocabularycorpuswas
consideredappropriate.

Threeloudspeakers (L1, L2, L3) wereplacedat 90deg spac-
ings aroundthe circumferenceof a 1.2m diametercircular table
at anelevationof 35cm. Theplacementof the loudspeakerssim-
ulatedthepresenceof a desiredspeaker (L1) andtwo competing
speakers(L2 andL3) in a realisticmeetingroomconfiguration.

An 8-element,equallyspaced,circulararrayof 20cmdiame-
ter wasplacedin themiddleof thetable,andanadditionalmicro-
phonewasplacedat the centreof the table. Lapel microphones
wereattachedto t-shirtshangingfrom eachof the loudspeakers.
Thesametypeof omnidirectionalmicrophonewasusedin all lo-
cations.Thecirculartablewaslocatedat oneendof a moderately
reverberant,8.2mO 3.6mO 2.4mrectangularroom. Thedominant
non-speechnoisesourcewasa PC locatedat the oppositeendof

the room. Theexperimentalconfigurationis illustratedin Figure
2.

Theenergy levelsof all utterancesin theNumberscorpuswere
normalisedtoensurearelativelyconstantdesiredspeechlevelacross
all recordings.Thecorpuswasthendividedinto a 6049-utterance
training set, a 2026-utterancecrossvalidation set, and a 2061-
utterancetest set. “Competing-speaker” versionsof the cross-
validationandtestsetswerealsoproducedby rearrangingtheor-
derof their respective utterances.

The cross-validation and testsetswereoutput from L1 with
no overlappingspeechandrecordedon all microphonechannels.
This wasthenrepeatedmultiple timesin thepresenceof overlap-
ping speechoutputfrom L2 and/orL3. All threepossiblecompet-
ing speaker scenarioswereconsidered.The output levels of L1,
L2 andL3 were identical, andwerekept constantin all record-
ing scenarios. The multi-loudspeaker dataplaybackand multi-
microphonerecordingweremanagedby thesameequipment,which
ensuredthatall input channelsweresimultaneouslysampled,and
that themicrophonerecordingsweresynchronisedwith the loud-
speaker outputs. The samplingrate usedin all recordingswas
8kHz. All subsequentdiscussionwill refer to the recordingsce-
nariosasS@ (no overlappingspeech),S@ 2 andS@#P (1 competing
speaker),andS@ 2 P (2 competingspeakers).

A multi-microphonecorpuscontainingall recordingsdetailed
above hasbeencompiled,andis now publicly available [6].

For theseexperiments,the microphonearray processingde-
scribedin Section2 wasappliedto themicrophonearrayrecord-
ings from eachscenarioin order to enhancethe desiredspeech
signal.

4. EXPERIMENTS AND RESULTS

A baselinespeechrecognitionsystemwastrainedusingHTK on
thecleantrainingsetfrom theoriginal Numberscorpus.Thesys-
tem consistedof 80 tied-statetriphoneHMM’ s with 3 emitting
statesper triphoneand12 mixturesperstate.39-elementfeature
vectorswereused,comprising13MFCC’s (includingthe0thcep-
stralcoefficient) with their first andsecondorderderivatives.The
baselinesystemgaveaWERof 6.32%usingthecleantestsetfrom
theoriginal Numberscorpus.

Threerecorded“channels”resultingfrom the datacollection
andmicrophonearrayprocessingwereretainedfor speechrecog-
nition modeladaptationandperformanceevaluation.Thesechan-
nelswere:Q Centretabletopmicrophonerecording(Centre)Q Desiredspeaker (L1) lapelmicrophonerecording(Lapel)Q Enhancedoutputof microphonearrayprocessing(Array)

MAP adaptationwasperformedon thebaselinemodelsusing
the cross-validation set for eachchannel-scenariopair, and then
thespeechrecognitionperformanceof theadaptedmodelswasas-
sessedusingthe correspondingrecordedtestset. Table1 shows
theword errorrate(WER) resultsfor all channel-scenariopairs.

FromtheS@ results,theWER’s for theArray andLapelchan-
nelswerethesame,andcomparableto thatof thebaselinesystem.
This shows that the recognitionperformanceof the table-topmi-
crophonearrayis equivalentto theclose-talkinglapelmicrophone
in low noiseconditions.TheWERfor thecentremicrophonechan-
nel is slightly higherdueto its distancefrom thedesiredspeaker,
andgreatersusceptibilityto roomreverberation.
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Scenario Lapel Centre Array
S@ 7.01 10.06 7.00
S@ 2 26.69 60.45 19.37
S@#P 22.17 54.67 19.26
S@ 2 P 35.25 73.55 26.64

Table 1. Worderrorrateresults(%)
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Fig. 4. WER resultsfor differentnumbersof competingspeakers

Theadditionof a singlecompetingspeaker (SRTS andSR#U ) (re-
sultingin approximately0dB SNRat thecentremicrophoneloca-
tion) hada severeeffect on the WER for the centremicrophone
channel. The lapel microphonechannelperformedsubstantially
betterdueto its proximity to thedesiredspeaker. This difference
in WER wasmorepronouncedwhena secondcompetingspeaker
wasintroducedin SRTS�U (resultingin approximately-3dB SNR at
thecentremicrophonelocation).

In all overlappingspeechscenarios,themicrophonearrayout-
putgavebetterword recognitionperformancethanboththecentre
andlapel microphonechannels.Theseresultsareput in context
whenoneconsidersthat the individual microphonesin the array
wereeachsubjectedto essentiallythesamesoundfield asthecen-
tre microphone. The signal enhancementprovided by the array
processingovercamethe lower SNR andincreasedreverberation
susceptibility, and improved recognitionaccuracy to a level that
exceededthatof theclose-talkinglapelmicrophone.

Figure4 illustratesthe WER trendsfor eachchannelin sce-
narioswith 0, 1 and2 competingspeakers.Thevaluesplottedfor
thesinglecompetingspeaker casearethe averageof theSRTS and
SR#U WER resultsshown in Table1.

5. CONCLUSIONS

In this work a table-topmicrophonearray suitablefor use in a
meetingroomwaspresented.A microphonearraypostfilterbased
on an assumednoisefield coherencemodelwasusedwherethe
coherencemodelwasformulatedto accountfor multiple localised
noisesourceswithin anotherwisediffusenoisefield.

Speechrecognitionperformanceusingtheoutputof themicro-
phonearraywascomparedto recognitionperformanceusingboth
a close-talkinglapel microphoneattachedto the desiredspeaker,
anda singlemicrophonein the centreof a meetingtable. When
no overlappingspeechwaspresent,the arrayoutput recognition

performancewasequivalentto thatof thelapelmicrophone.In the
presenceof overlappingspeech,themicrophonearraysuccessfully
enhancedthedesiredspeech,andgave thebestrecognitionperfor-
manceof all microphoneconfigurationstested.

A microphonearrayspeechrecognitiondatabasebasedon the
Numberscorpuswasrecordedduringthis work, andis now avail-
ablefor public distribution [6].
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