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ABSTRACT ground noise is assumed to be spatially white. For apply-
ing this method to spatially-colored background noise, pre-
whitening is required. For pre-whitening, the background
noise must be independently observed. However, this is not
possible in a reverberant sound field since such a field it-
self is a part of the background noise and cannot be sep-
X arated from the direct sound. Another way is to estimate
verberant sound field, the feature of the number of sourcesy,q oigenvalue corresponding to the background noise and
in the eigenvalue distribution is degraded by the room re- 1, . nt the eigenvalues above the noise eigenvalues. This
verberation. In this paper, Support Vector Machines is ap- 5 oach is also difficult since the noise level and, hence,
plied to classify the eigenvalue distributions which are not the noise eigenvalues are time-variant.

clearly separable. 'The proposed method is thep applied tq In this paper, a method of estimating the number of
the source separation system and is evaluated via automatic, -4 sources in a reverberant acoustic field using Support

speech recognition. Vector Machines (SVM) (e.g., [4]) is proposed. In this meth-
od, a rough shape of the eigenvalue distribution is utilized
1. INTRODUCTION for estimating the number of sources. The advantage of
this method over the conventional method is that it does
Estimation of the number of sound sources is an impor- NOt require pre-whitening or precise estimation of the back-
tant issue in sound localization and separation. In soundground noise level, which may not be available in an actual
localization based on the subspace approach [1], the numfeverberant sound field. To evaluate the performance of this
ber of sources is required for determining the signal/noise method, it is combined with use of a maximum likelihood
subspace. In the sound separation, the number of sourcegdaptive beamformer (e.g., [5]) in which the detection of
is required for the determination of the dimension of the in- Speech/non-speech segment is required.
verse filter (the number of output channels). Moreover, as

employed in this paper, when separating an intermittent sig- 2. ESTIMATING THE NUMBER OF SOUND

A method of estimating the number of sound sources in a re-
verberant sound field is proposed in this paper. It is known
that the eigenvalue distribution of the spatial correlation ma-
trix calculated from a multiple microphone input reflects

information on the number of sources. However, in a re-

nal such as speech from continuous noise such as music, SOURCES
estimation of the number of sources can be used to detect
the speech segment. 2.1. Eigenvalue Distribution

When input signals from multiple microphones (micro-
phone array) are available, it is known that the eigenvalue
distribution of the spatial correlation matrix calculated from
the multi-channel input reflects information on the num-
ber of sources [2]. The number dbminanteigenvalues
is equal to the number of (dominant) sound sources (1-rank x(w, T) = A(w, T)s(w, T) + n(w, T), (1)
model). Several methods for estimating the number of sourc-
es have been proposed based on this knowledge. HowwhereA (w, T) is a transfer function matrix, then, n)th el-
ever, it is sometimes difficult to employ these methods in ement of which is a transfer function of tdeect path from
reverberant sound fields such as those in ordinary roomsa nth source to thenth microphone. The symbeal(w, T')
or offices as dealt with in this paper. In methods using is a source spectrum, andw, T') is the background noise
information criterion such as AIC or MDL [3], the back- spectrum observed at the microphones.

Let us consider the short-time Fourier transform of micro-
phone array inpuk(w,T) = [z1(w,T) ... zar(w,T)]7,
wherew is a frequency is a frame index and/ is the
number of microphones. This input signal is modeled as
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Fig. 1. Eigenvalue distributions.

The spatial correlation matriR (w) is defined as

)

where- denotes the complex conjugate transpose. When maximize —

the noisen(w, T') is uncorrelated from the soure¢w, T'),
the spatial correlation can be written as

R(w) = A(w)Pw) A" (w) + K(w), ®)

whereK (w) = E[n(w, T)n" (w, T)] is the spatial correla-
tion of the noise. The matriP(w) = E[s(w, T)s (w, T)]

is the cross-spectrum of the sources. When the noise is spa-

tially white, (3) can be simplified as

R(w) = A(w)P(w)AT () + oI, (4)

wherel is an identity matrix. The symbet is the variance
(power) of the noise. In this case, the eigenvalueB.ab),
A1, -+, Ay become

N M—-N

®)

Assuming that the power of the soursev, T') is greater
than that of the background noiséw, T'), the typical eigen-
value distribution becomes that depicted in Fig. 1 (a). In
this figure which reflects the characteristics shown in §5),

)\17”'7)\M:71+O'7"'77N+0'70'7"'7U

dominant eigenvalues corresponding the number of sound

Let us suppose that the training data set, i.e., the set
of the eigenvalue distributiong\;} and the corresponding
class labeld;} (1-source event or 2-source event), is avail-
able. The class label can be eitller= +1 (1-source event)
ord; = —1 (2-source event).

The decision function of SVM is written as

l

f(x)= ZafdiK(x,xi) +b*,

i=1

(6)

whereK (-, -) is a Mercer kerneky; is the optimal solution
of the following quadratic problem [4]{ > 0 is a con-
stant),

l l

% Z Oéi()éjdide(/\i, )\j) + Z (o7}

ij=1 i=1

()

l
subjectto» " a;d; =0, 0<a; <C (i =1,...,1), (8)
=1

andb* is calculated using the equation
b =d; — Y, aid; K (M, A) inwhichiis 0 < a; < C.
Using function (6), an arbitrary eigenvalue distribution
A can be categorized into the following 4 categories. Cat-
egory 1: f(\) € (—o0,—1], category 2:f()\) € (—1,0],
category 3:f(\) € (0,1) and category 4f(\) € [1, +0).
The number of sources is estimated based on the value of
this decision function. When the value of the decision func-
tion falls into the category 1 or 2, the number of sources is
estimated as 1, while if the value fall into category 3 or 4, the
number of sources is estimated as 2. However, it should be
noted that the regiofi-1, 1) is termed themargin of sepa-
ration and that when the value of the decision function falls
into this region, i.e., category 2 or 3, the eigenvalue distri-
bution is not clearly separable and the decision is somewhat
ambiguous. These cases are further considered in the exper-
iment presented in Section 4. Since the eigenvalue distribu-
ion is obtained in each frequency bin, the final decision as

sources is observed. In a real acoustic problem in the reverio whether the corresponding frame is a 1-source event or a

berant sound field, the above assumptions, i.e. sthatT")
andn(w, T') are uncorrelated in (3) and thafw, T') is spa-
tially white in (4), do not hold. However, the above charac-

2-source event is made by taking the histogram of the above
decision over the frequencies of interest.

teristics shown in Fig. 1 (a) can be seen to some extentin the

real eigenvalue distribution pattern depicted in Fig. 1 (b). In

this paper, this difference in eigenvalue distribution pattern

is utilized to estimate the number of sources.

2.2. Support Vector Machines

For classifying the eigenvalue distribution corresponding to

3. SOUND SOURCE SEPARATION SYSTEM

In this section, assuming that the one sound source (target)
is intermittent while the other (jammer) is continuous, the
proposed method of estimating the number of sound sources
is applied to the sound source separation system.

the number of sound sources, SVM is introduced. Since3.1. Separating Matrix

SVMiis basically a binary classifier, classification of 1-source
and 2-source cases is considered in this paper for the sak

of simplicity. Theoretically, this binary classification can be
easily extended to a case with more sources.

The maximum likelihood adaptive beamformer is given by

the following equation:

y(w,T) = WH(W>T)X(W7T)7 )
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mic 1nput x
" filtered output y Table 1. Location of two sources.
] | target sourcd  music

L1 0 degree | 280 degree
L2 100 degree | 160 degree
L3 || 300 degree | 120 degree
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Fig. 2. Block diagram of the source separation system.
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music source is selected from L1, L2 and L3 shown in Table
1. The music source is continuous while the speech source
is intermittent as depicted in Fig. 3. The spatial correlation

9
time [s]

Fig. 3. Source signal and result of estimation.

where beamformer coefficient vect (w, T') is given by is calculated from the microphone input with a duration of
1, s l1severyls.
W(w,T) = - R, (‘fl)a(w? ) (10) To obtain the training data set, two segments of the in-
af(w)R; (w)a(w) put signal, one for the 1-source event and the other for the

Here,R.(w) is a spatial correlation matrix when the target 27SOUrce event are given. The segments each have a dura-

source is absent and is estimated in the 1-source event segﬁon of 1 s. This training set is termed a rough training set
ment. On the other hand(w) is a transfer function vector greafter. In a practical situation, this data sgt can be ob-
for the target source. This vector is estimated in the 2-source!@n€d by the human operator (user) by pressing the button
event segment using sound localization such as the MUSICONCe in the 1-source event and once in the 2-source event.
method [6]. Eveninthe 2Tsource event, however, the nl_meer of sourc-
Figure 2 shows a block diagram of the sound source sep-€S Mmay beeffectivelyone due to the power difference of
aration system with the proposed number-of-sources esti-tN€ spectrum of the two sources. Therefore, a more precise
mation. The input time-domain signal#) is transformed training set was also prepared in the following manner:
to the frequency domain by the short-time Fourier trans-
form (FFT), and the spatial correlatid(w) and the eigen-
value distribution is calculated (EVD). Then, the number
of sources is estimated from the eigenva]ue d?stripution by o A(w) is classified as a 2-source event whey (w) —
using the proposed method. Based on this estimation, Py, (w)| < Pinreshotd-

o If N =2, a(w) is updated.

e \(w) is classified as a 1-source event wheq (w) —
P52 (w)| > Pthreshald-

Here, P;, (w) is the power of sound source B, (w) is the
e If N =1, R;(w) is updated. power of sound source 2 at the frequencyand Pireshold

Using the updated(w) andR ; (w), the coefficient vector i§ the thre_shold of the power. This dat.a set i; Fermed apre-
W is calculated. This frequency-domain coefficient vector CiS€ training set hereafter. The precise training set is not

W is then transformed into the time-domain. and the time- available in practical situations since the power difference
domain inputx(¢) is filtered. ' cannot be known from the mixed input signal. This data set

was used to investigate the best achievable performance of
the SVM classifier.

In the estimation of the number of sources, the conven-
tional threshold method was also employed for the sake of
comparison. In this method, the number of sources is es-
As input signals, two sound sources, Japanese words andimated by counting the number of eigenvalues above the
a music signal were convolved with the measured impulsearbitrary threshold.

4. EXPERIMENT

4.1. Experimental Conditions

V - 487



Table 2. Rate of discrimination when the data in categories
2 and 3 are included/excluded.

[ included] excluded]
rough 79% 86%
precise|| 70% 77%
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Table 3. Percentage of 4 categories threshold [dB]
] [ cat. 1] cat. 2] cat. 3] cat. 4| Fig. 5. Correct estimation rate.
rough || 53% | 21% | 11% | 15% 90
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4.2. Experimental Results g E
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As described in Section 2.2, the eigenvalue distributions are 20f o0 re throshold”
classified into 4 categories. Figure 4 shows a representa- R — @z e 1+ s

tive histogram of these 4 categories over frequencies of in-
terest. Based on this histogram, the final number of sound
sources for a certain frame is decided. In this example, the
number of sources is determined as one since the number

of frequency bins classified as categories 1 and 2 is greatefpe have herein presented a method of estimating the num-
than that of categories 3 and 4. This estimation is conductedyer of sound sources by classifying the eigenvalue distri-

in each time frame (the frame length is 1 s). Figure 3 also jytjon using SVM. One of the advantages of SVM is that
_shows res_ults qf es_tlmatlon and the true classification fortheit can achieve a better performance by excluding ambigu-
input depicted in Fig. 3.

Fig. 6. Word recognition rate.

5. CONCLUSION

ous eigenvalue distributions for the classification, that was

As described in Section 2.2, when the eigenvalue distri- Verified by the experiment. The proposed method was then
butions are classified into categories 2 and 3 (margin of sep-aPplied to the source separation system and was evaluated
aration), these distributions are not clearly separable. TableVi@ ASR. The performance of the system using the pro-
3 shows frequencies of the distribution categorized into the P0Séd method is equivalent to the best performance using
4 categories for all examined data. Table 2 shows the dis-the threshold method. Under practical conditions, the thresh-
crimination rate when the distributions classified into cate- 0/d method much trial and error may be required to obtain
gories 2 and 3 are included or excluded. From this table, it tS Pest performance. Thus, the advantage of the proposed
was shown that when these ambiguous data were excludedn€thod is that it requires only a short period (2 s) of ob-
in the final decision, the discrimination rate was improved Served input for the training.
by 7%. Based on this result, the data classified into only
categories 1 and 4 were utilized in the final decision in the 6. REFERENCES
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