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ABSTRACT

A method of estimating the number of sound sources in a re-
verberant sound field is proposed in this paper. It is known
that the eigenvalue distribution of the spatial correlation ma-
trix calculated from a multiple microphone input reflects
information on the number of sources. However, in a re-
verberant sound field, the feature of the number of sources
in the eigenvalue distribution is degraded by the room re-
verberation. In this paper, Support Vector Machines is ap-
plied to classify the eigenvalue distributions which are not
clearly separable. The proposed method is then applied to
the source separation system and is evaluated via automatic
speech recognition.

1. INTRODUCTION

Estimation of the number of sound sources is an impor-
tant issue in sound localization and separation. In sound
localization based on the subspace approach [1], the num-
ber of sources is required for determining the signal/noise
subspace. In the sound separation, the number of sources
is required for the determination of the dimension of the in-
verse filter (the number of output channels). Moreover, as
employed in this paper, when separating an intermittent sig-
nal such as speech from continuous noise such as music,
estimation of the number of sources can be used to detect
the speech segment.

When input signals from multiple microphones (micro-
phone array) are available, it is known that the eigenvalue
distribution of the spatial correlation matrix calculated from
the multi-channel input reflects information on the num-
ber of sources [2]. The number ofdominanteigenvalues
is equal to the number of (dominant) sound sources (1-rank
model). Several methods for estimating the number of sourc-
es have been proposed based on this knowledge. How-
ever, it is sometimes difficult to employ these methods in
reverberant sound fields such as those in ordinary rooms
or offices as dealt with in this paper. In methods using
information criterion such as AIC or MDL [3], the back-

ground noise is assumed to be spatially white. For apply-
ing this method to spatially-colored background noise, pre-
whitening is required. For pre-whitening, the background
noise must be independently observed. However, this is not
possible in a reverberant sound field since such a field it-
self is a part of the background noise and cannot be sep-
arated from the direct sound. Another way is to estimate
the eigenvalue corresponding to the background noise and
to count the eigenvalues above the noise eigenvalues. This
approach is also difficult since the noise level and, hence,
the noise eigenvalues are time-variant.

In this paper, a method of estimating the number of
sound sources in a reverberant acoustic field using Support
Vector Machines (SVM) (e.g., [4]) is proposed. In this meth-
od, a rough shape of the eigenvalue distribution is utilized
for estimating the number of sources. The advantage of
this method over the conventional method is that it does
not require pre-whitening or precise estimation of the back-
ground noise level, which may not be available in an actual
reverberant sound field. To evaluate the performance of this
method, it is combined with use of a maximum likelihood
adaptive beamformer (e.g., [5]) in which the detection of
speech/non-speech segment is required.

2. ESTIMATING THE NUMBER OF SOUND
SOURCES

2.1. Eigenvalue Distribution

Let us consider the short-time Fourier transform of micro-
phone array inputx(ω, T ) = [x1(ω, T ) . . . xM (ω, T )]T ,
whereω is a frequency,T is a frame index andM is the
number of microphones. This input signal is modeled as

x(ω, T ) = A(ω, T )s(ω, T ) + n(ω, T ), (1)

whereA(ω, T ) is a transfer function matrix, the(m, n)th el-
ement of which is a transfer function of thedirectpath from
a nth source to themth microphone. The symbols(ω, T )
is a source spectrum, andn(ω, T ) is the background noise
spectrum observed at the microphones.
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Fig. 1. Eigenvalue distributions.

The spatial correlation matrixR(ω) is defined as

R(ω) = E[x(ω, T )xH(ω, T )], (2)

where·H denotes the complex conjugate transpose. When
the noisen(ω, T ) is uncorrelated from the sources(ω, T ),
the spatial correlation can be written as

R(ω) = A(ω)P(ω)AH(ω) + K(ω), (3)

whereK(ω) = E[n(ω, T )nH(ω, T )] is the spatial correla-
tion of the noise. The matrixP(ω) = E[s(ω, T )sH(ω, T )]
is the cross-spectrum of the sources. When the noise is spa-
tially white, (3) can be simplified as

R(ω) = A(ω)P(ω)AH(ω) + σI, (4)

whereI is an identity matrix. The symbolσ is the variance
(power) of the noise. In this case, the eigenvalues ofR(ω),
λ1, · · · , λM become

λ1, · · · , λM =
N︷ ︸︸ ︷

γ1 + σ, · · · , γN + σ,

M−N︷ ︸︸ ︷
σ, · · · , σ (5)

Assuming that the power of the sources(ω, T ) is greater
than that of the background noisen(ω, T ), the typical eigen-
value distribution becomes that depicted in Fig. 1 (a). In
this figure which reflects the characteristics shown in (5),N
dominant eigenvalues corresponding the number of sound
sources is observed. In a real acoustic problem in the rever-
berant sound field, the above assumptions, i.e., thats(ω, T )
andn(ω, T ) are uncorrelated in (3) and thatn(ω, T ) is spa-
tially white in (4), do not hold. However, the above charac-
teristics shown in Fig. 1 (a) can be seen to some extent in the
real eigenvalue distribution pattern depicted in Fig. 1 (b). In
this paper, this difference in eigenvalue distribution pattern
is utilized to estimate the number of sources.

2.2. Support Vector Machines

For classifying the eigenvalue distribution corresponding to
the number of sound sources, SVM is introduced. Since
SVM is basically a binary classifier, classification of 1-source
and 2-source cases is considered in this paper for the sake
of simplicity. Theoretically, this binary classification can be
easily extended to a case with more sources.

Let us suppose that the training data set, i.e., the set
of the eigenvalue distributions{λi} and the corresponding
class label{di} (1-source event or 2-source event), is avail-
able. The class label can be eitherdi = +1 (1-source event)
or di = −1 (2-source event).

The decision function of SVM is written as

f(x) =
l∑

i=1

α∗i diK(x,xi) + b∗, (6)

whereK(·, ·) is a Mercer kernel,α∗i is the optimal solution
of the following quadratic problem [4] (C > 0 is a con-
stant),

maximize− 1
2

l∑

i,j=1

αiαjdidjK(λi, λj) +
l∑

i=1

αi (7)

subject to
l∑

i=1

αidi = 0, 0 ≤ αi ≤ C (i = 1, . . . , l), (8)

andb∗ is calculated using the equation
b∗ = di −

∑l
j=1 α∗jdjK(λi, λj) in which i is 0 < αi < C.

Using function (6), an arbitrary eigenvalue distribution
λ can be categorized into the following 4 categories. Cat-
egory 1: f(λ) ∈ (−∞,−1], category 2:f(λ) ∈ (−1, 0],
category 3:f(λ) ∈ (0, 1) and category 4:f(λ) ∈ [1,+∞).
The number of sources is estimated based on the value of
this decision function. When the value of the decision func-
tion falls into the category 1 or 2, the number of sources is
estimated as 1, while if the value fall into category 3 or 4, the
number of sources is estimated as 2. However, it should be
noted that the region(−1, 1) is termed themargin of sepa-
ration and that when the value of the decision function falls
into this region, i.e., category 2 or 3, the eigenvalue distri-
bution is not clearly separable and the decision is somewhat
ambiguous. These cases are further considered in the exper-
iment presented in Section 4. Since the eigenvalue distribu-
tion is obtained in each frequency bin, the final decision as
to whether the corresponding frame is a 1-source event or a
2-source event is made by taking the histogram of the above
decision over the frequencies of interest.

3. SOUND SOURCE SEPARATION SYSTEM

In this section, assuming that the one sound source (target)
is intermittent while the other (jammer) is continuous, the
proposed method of estimating the number of sound sources
is applied to the sound source separation system.

3.1. Separating Matrix

The maximum likelihood adaptive beamformer is given by
the following equation:

y(ω, T ) = WH(ω, T )x(ω, T ), (9)
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where beamformer coefficient vectorW(ω, T ) is given by

W(ω, T ) =
R−1

J (ω)â(ω)
âH(ω)R−1

J (ω)â(ω)
. (10)

Here,RJ(ω) is a spatial correlation matrix when the target
source is absent and is estimated in the 1-source event seg-
ment. On the other hand,â(ω) is a transfer function vector
for the target source. This vector is estimated in the 2-source
event segment using sound localization such as the MUSIC
method [6].

Figure 2 shows a block diagram of the sound source sep-
aration system with the proposed number-of-sources esti-
mation. The input time-domain signalx(t) is transformed
to the frequency domain by the short-time Fourier trans-
form (FFT), and the spatial correlationR(ω) and the eigen-
value distributionλ is calculated (EVD). Then, the number
of sources is estimated from the eigenvalue distribution by
using the proposed method. Based on this estimation,

• If N = 2, â(ω) is updated.

• If N = 1, RJ(ω) is updated.

Using the updated̂a(ω) andRJ (ω), the coefficient vector
W is calculated. This frequency-domain coefficient vector
W is then transformed into the time-domain, and the time-
domain inputx(t) is filtered.

4. EXPERIMENT

4.1. Experimental Conditions

As input signals, two sound sources, Japanese words and
a music signal were convolved with the measured impulse

Table 1. Location of two sources.
target source music

L1 0 degree 280 degree
L2 100 degree 160 degree
L3 300 degree 120 degree

cat. 1 cat. 2 cat. 3 cat. 4
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Fig. 4. Example of estimating result in one time frame.

response of a meeting room with a reverberation time of
0.5 s. The microphone array is a circular array with 8 mi-
crophones. The diameter of the array is 0.5 m and the micro-
phone is equally spaced. The position of the speech and the
music source is selected from L1, L2 and L3 shown in Table
1. The music source is continuous while the speech source
is intermittent as depicted in Fig. 3. The spatial correlation
is calculated from the microphone input with a duration of
1 s every 1 s.

To obtain the training data set, two segments of the in-
put signal, one for the 1-source event and the other for the
2-source event are given. The segments each have a dura-
tion of 1 s. This training set is termed a rough training set
hereafter. In a practical situation, this data set can be ob-
tained by the human operator (user) by pressing the button
once in the 1-source event and once in the 2-source event.

Even in the 2-source event, however, the number of sourc-
es may beeffectivelyone due to the power difference of
the spectrum of the two sources. Therefore, a more precise
training set was also prepared in the following manner:

• λ(ω) is classified as a 1-source event when|Ps1(ω)−
Ps2(ω)| > Pthreshold.

• λ(ω) is classified as a 2-source event when|Ps1(ω)−
Ps2(ω)| ≤ Pthreshold.

Here,Ps1(ω) is the power of sound source 1,Ps2(ω) is the
power of sound source 2 at the frequencyω, andPthreshold

is the threshold of the power. This data set is termed a pre-
cise training set hereafter. The precise training set is not
available in practical situations since the power difference
cannot be known from the mixed input signal. This data set
was used to investigate the best achievable performance of
the SVM classifier.

In the estimation of the number of sources, the conven-
tional threshold method was also employed for the sake of
comparison. In this method, the number of sources is es-
timated by counting the number of eigenvalues above the
arbitrary threshold.
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Table 2. Rate of discrimination when the data in categories
2 and 3 are included/excluded.

included excluded

rough 79% 86%
precise 70% 77%

Table 3. Percentage of 4 categories
cat. 1 cat. 2 cat. 3 cat. 4

rough 53% 21% 11% 15%
precise 40% 21% 16% 23%

4.2. Experimental Results

As described in Section 2.2, the eigenvalue distributions are
classified into 4 categories. Figure 4 shows a representa-
tive histogram of these 4 categories over frequencies of in-
terest. Based on this histogram, the final number of sound
sources for a certain frame is decided. In this example, the
number of sources is determined as one since the number
of frequency bins classified as categories 1 and 2 is greater
than that of categories 3 and 4. This estimation is conducted
in each time frame (the frame length is 1 s). Figure 3 also
shows results of estimation and the true classification for the
input depicted in Fig. 3.

As described in Section 2.2, when the eigenvalue distri-
butions are classified into categories 2 and 3 (margin of sep-
aration), these distributions are not clearly separable. Table
3 shows frequencies of the distribution categorized into the
4 categories for all examined data. Table 2 shows the dis-
crimination rate when the distributions classified into cate-
gories 2 and 3 are included or excluded. From this table, it
was shown that when these ambiguous data were excluded
in the final decision, the discrimination rate was improved
by 7%. Based on this result, the data classified into only
categories 1 and 4 were utilized in the final decision in the
experiment described below.

Figure 5 shows the rate of correct estimation. For the
sake of comparison, the results for the threshold method are
also shown. For the threshold method, the highest rate was
achieved when the threshold was around -13 dB. For the
proposed SVM method, performance similar to the best per-
formance achieved by the threshold method was obtained
for both rough and precise training.

Furthermore, for the word recognition rate, the SVM
method achieved a rate comparable to the highest rate achieved
by the threshold method in Fig. 6. The rate for the rough
training, however, is lower than that for the precise training
by 10%.
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Fig. 5. Correct estimation rate.
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Fig. 6. Word recognition rate.

5. CONCLUSION

We have herein presented a method of estimating the num-
ber of sound sources by classifying the eigenvalue distri-
bution using SVM. One of the advantages of SVM is that
it can achieve a better performance by excluding ambigu-
ous eigenvalue distributions for the classification, that was
verified by the experiment. The proposed method was then
applied to the source separation system and was evaluated
via ASR. The performance of the system using the pro-
posed method is equivalent to the best performance using
the threshold method. Under practical conditions, the thresh-
old method much trial and error may be required to obtain
its best performance. Thus, the advantage of the proposed
method is that it requires only a short period (2 s) of ob-
served input for the training.
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