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ABSTRACT mally decompose the signal into a reduced rank representa-

tion whose basis vectors are "as independent as possible”.

. . ; C . This achieves several advantages for the compression task:
sion paradigm that exploits psychoacoustic information to o
1). The reduced rank representation is very sparse and al-

efficiently encode audio signals. Recently, extensive re- . s .
lows an adaptive transmission of the transform coefficients

search has been conducted in order to understand how th(?/vithout increasing the overall bitrate. 2). The bit allocation

brain encodes natural signals. These results suggest that the . : :
: : S IS performed on approximately independent channels, a sit-
encoding process is very efficient in terms of redundancy

reduction of the signal information. It could be that the psy- uation which IS reqwreq by rate dlsto_rtlon theory 3). No
. : psychoacoustic model is employed since the ICA vectors
choacoustic effects (such as the masking effect) are only a X .
. : do not correspond to the masking properties of the human
special case of a more general redundancy reduction mech-

) L . ; ear. Nevertheless, the superior performance of our method
anism that exists in the auditory pathway. Motivated by : T .

. . : . _suggests an interesting idea that the the classical psychoa-
this work we propose a new audio coding scheme that is

: : coustical masking of pure tones could be a special case of a
based on improved sound representation found by Indepen- . ; .

. ; . more general redundancy reduction mechanism of the audi-
dent Component Analysis. Using a local linear, low rank,

" tory pathway [3].
non-orthogonal transform, we remove additional redundan- yp y 3] )
S : . : . . The other components of our encoder are a standard fil-
cies in the signal. At low bitrates this coding scheme gives : . . )
. . ter bank used for time to frequency mapping, bit allocation
results superior to a legacy perceptual encoding scheme for . .
. ! A and a uniform quantizer. We compared our encoder to a ba-
different kinds of audio signals. : : ) .
sic perceptual encoder and it shows superior results in ob-

jective listening tests.

Traditional audio coding is based on a perceptual compres-

1. INTRODUCTION

Perceptual audio coders exploit psychoacoustical knowledge 2. PRELIMINARIES
a.bout the human auditory sy;tem to efficiently encode audio 2.1. Perceptual Coding
signals. These coders exploit a phenomenon known as the
'masking effect’, which was discovered in psychoacoustics Perceptual coding algorithms belong to the class of lossy
experiments. Extensive research has been conducted ovecompression algorithms. The performance of a lossy al-
the last years which aims to understand how the auditory gorithm is often measured by the reconstruction error. We
sensors encode the information in our brain. Recent resultswould like the reconstruction error to be minimal so that
show that the signals are efficiently encoded by the auditory the reconstructed data is as similar to the source as possi-
sensors in terms of redundancy reduction along the auditoryble. This situation is not true for perceptual coders. As in
pathway. Several models have been proposed to describether lossy coders, the goal of perceptual coders is that the
the behavior of this efficient coding process [1, 2]. reconstructed data will be similar to the source. However,

In this work we use the redundancy reduction idea in the similarity measure is defined by the human ear, thus, the
order to design a new architecture for a low bit-rate audio coder must exploit psychoacoustic knowledge about human
coder. We simulate the audio encoding process in a man-hearing to make the reconstruction error inaudible.
ner which we assume is done along the auditory pathway.  An important aspect of the human hearing is the mask-
Redundancy reduction is done using ICA, which is a re- ing effect. The masking effect [4] states that the threshold of
cently developed statistical tool for data analysis. We opti- hearing of the different frequencies arises in the presence of
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a masking tone or noise. Masking curves depicts the thresh-z. From Information theory we know that
old of hearing neighboring frequencies in the presence of
the tone or noise masker. The masking effect is used by

perceptual audio coders to make the reconstruction error in- ) . o )
whereq is the empirical distribution of the sourcesis the

audible. : LT
Figure 1 depicts the structure of a basic perceptual Coder_hypothesaed d'_Str'bUI_'on of the sources and KL stands for
the Kullback-Leibler divergence. One can show that

The signal samples are first processed using a time to fre-
guency mapping. The output of the filters are called sub-
band samples or subband coefficients. The subband coeffi-
cients are then used to calculate the masking thresholds for. , . o
each band. The bit allocation algorithm assign bits to the [T are the marg!nal PrF’d_UCt of the empirical distribution.
different bands so that the noise, which is introduced by the The second term is minimized when we chopse ] ¢;.

quantization process will be below the masking threshold, ' 1iS reduces the problem to minimiz€L(q || [T ;). The
thus inaudible by the listener. KL distance between a distribution vector and its marginal

probabilities is called thélutual Information. Eventually,
we wish to find a matrix which will make the empirical
sources as independent as possible.

Several algorithms have been proposed to solve the ICA
problem. A comprehensive overview of the algorithms can
be found in [6]. In our experiments we used the Jade [7]
algorithm.

<log(p(z)) >y o« —KL(q| p) 2

KL(qllp) =KLl [[e) + KL a lp) @)
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3. ENCODING ALGORITHM
Fig. 1. Basic perceptual audio coder architecture.
Our audio compression algorithm is comprised of several
building blocks (Figure 2). We use subband decomposi-
tion to perform an initial time to frequency mapping. The

22 Independent Component Analysis subband coefficients are then grouped to blocks and ICA

Independent Component Analysis (ICA) is a recently devel-
oped statistical tool for extracting statistically independent
components from a random vector [5]. ICA can be used to
solve the classical 'cocktail party’ problem in whiehsen-
sors record a mixture of people speaking simultaneously.
ICA is used to recover the original speaker signals from
mixtures. Other applications of ICA are audio analysis, nat-

analysis is computed on each block. The output of the ICA
analysis is both reduced rank ICA coefficients and ICA mix-
ing/demixing matrix. The ICA coefficients are then quan-
tized and packed in frames. The ICA transform matrix is
quantized and sent as side-information for each block.

3.1. Subband Decomposition

ural images analysis, financial data, medical data and other

inverse mixing problems [6].
In addition to unmixing problems ICA has been shown

For subband decomposition we adopt the polyphase filter
bank used in the MPEG coding standard [8, 9]. This filter

to be a useful tool for feature extraction and data representa-Pank is a pseudo-QMF, cosine modulated filter bank which

tion. Formally, letx = (z1, x> . ..z,) be the observed data

vector. ICAs goal is to find the matriXd such that:
x = As (1)

wheres = (s1, 52 . .. s,) are statistically independent com-

ponents. The columns of the matéx can be thought of as
basis vectors and the vectois the representation of in

this basis. ICA analysis for feature extraction and data rep-

splits the PCM input audio samples into 32 equally spaced
bands. The filter bank gives good time resolution and rea-
sonable frequency resolution [9].

We denote byz[n] the input sample at tima and by
s;[t] the output of tha'th filter bank band at time. The
filter bank is critically sampled, which means that for every
32 input samples the filter bank outputs 32 samples. Since
the output of each band is sub-sampled by a factor of 32
thent is a multiple of 32 audio samples. The output of each

resentation was studied in [2, 1]. For natural audio signals filter can be written [10]:

it was shown that ICA analysis results in a local vector basis

which resembles short waveforms in the original signal [2].
The ICA problem can be formalized as maximum like-

lihood estimation problem. We wish to find a matrlxand

set of sources which best explains the empirical variables

511

sit] = Z x[t — n]H;[n]

n=0

(4)

where
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Hifn] = hin]cos 2i+1)(n - 16)7 (5)  asside information for each block and used by the decoder
64 to decode the samples by

andh[n] corresponds to analysis window coefficients. XT

rec

T T T
=YIB=YI(VIW) (9)

32. Reduced Rank ICA Coding The signt stands for the pseudo-inverse matrix.
The filter bank qutput coefficients are grouped into blocks 3.3. Bit Allocation and Quantization
for ICA processing. When choosing the block length we
have to consider two factors. On one hand, we want a true Rate distortion theory shows that a signal can be compressed,
realization of the redundancy reduction process in the audi- for a given distortionD, in a rate that is lower-bounded by
tory pathway, which constrains us to short blocks. On the the minimal mutual information between the original sig-
other hand, the ICA matrix must be sent along with each nal and the quantized signal. In order to obtain an optimal
block of data as side information so using short blocks gives quantizerQ, knowledge of the complete multi-variate prob-
us more overhead. We found that using blocks of approxi- ability distribution of the source vector is necessary. This re-
mately 1 second is a sufficient trade-off. quires exponentially large codebooks. Due to practical con-
ICA analysis is comprised of two steps. The first step siderations, the quantization is performed componentwise,
includes dimension reduction of the data, and the seconda situation which is optimal only if the variables are mutu-
step consists of ICA analysis on the reduced rank coeffi- ally independent. In case of Gaussian variables, statistical
cients. We denote the filter bank coefficients blockXy independence is achieved by PCA. In case of non-Gaussian
X is a32 x L matrix where22xXL = 1 second. If we signal statistics, this is approximately achieved using ICA.
considerXT we can view the columns as variables and the The output of the ICA analysis step is a set-aftatisti-
rows as time instants of these variables. Each row is a vectorcally independent bands. Our hypothesis is that in our rep-
of dimension 32 which is a time instance of the filter bank resentation the different bands closely resemble the coding
output. These variables are highly correlated and we would information sent by the auditory sensors to code audio sig-
like to represent them in a basis on which there will be no nals. Thus, we do not introduce any other perceptual mea-
correlation between the variables. sure in the bit allocation process as was done in the legacy
The first step is to reduce the dimension of the data. We audio coder. The quantization of the different bands here
do it by reducing the dimension of the row spacéof by should be optimal in term of minimum reconstruction error

using the singular value decomposition (SVD) methsd" of the coefficients.
can be decomposedto : If we denote byR,., the average number of bits used
to encode samples in the blodk;, the average bit rate used
X" =usv” (6) to encode samples in the k'th band anddyythe variance

of the coefficients on the k'th band. Then the optimal bit
where U is anm * . matrix and V is am * n matrixand  allocation for the different bands is given by [11]:
S is a diagonal matrix which contains the singular values of
XT. In our schemem = L andn = 32. To reduce the
dimension of the row space ®& T to a lower dimensiom,
we projectX T on the firstr column vectors oV

2

Ok
=, oL
Hk:l (Uk) "

The bit allocation according to equation 10 is optimal in

1
Ry = Ravg + 51092 (10)

Y'=X"V, (7) terms of the reconstruction error. The problem is tRat
_ _ _ _ _ might be negative or not an integer number. To solve this
whereV, is a matrix which contains the firstcolumn vec-  proplem we use an iterative algorithm for bit allocation with

tors fromV. 'Y now is anr x m matrix in which the rows  positive integer constraint similar to the one described in
contain the representation of the filter bank coefficients in 11).

the reduced rank basis. The rowsYfare not statistically Using the bit allocation information we quantize the ICA
independent. To achieve independence we apply ICA anal-¢qefficients with a uniform quantizer. We assign 8 bits to
ysis on the rows o¥: quantize the ICA mixing matrix samples. In our experi-
¢ — WVTX ®) ment; th(_e dimension\(vas chosen.to 5. Thus, the ICA ma-

- r trix size is32 x 5 which results in overhead of 160 bits

assigned for each block of data. We compensate this over-

XV |sdthe ukn,m'dx'ng rzatrlx obtained by ICAY is the re-f head with the dimension reduction of the filter bank coeffi-
uced rank independent component representation of theyo s The scalefactors which are used by the decoder for

. . _ T ﬁ .
subband coefficients. The matii= (V,; W)* is encoded re-quantization are quantized with 6 bits.
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v . . . . the encoder ranking results. It can be seen that for both
Signal Filter Bank ICA Bit Allocation Bitstream ) -

T 7| Anaysis [ | Analysis Quantizatio Formattin sampling rates the ICA coder was rated higher than Layer-1
and less than Layer-3. Moreover, as we go up with sam-
pling ratio ICA encoder is significantly better than Layer-

ICA Matrix 1. The test files, which were used in the experiment can
Quantization be downloaded from http://www.cs.huji.ac-#¢hopin/ica-

encoder/index.html
Fig. 2. Architecture of the proposed encoder.
5. CONCLUSION

5 5 In this paper we have shown new architecture for a low
4 I 4 I bit-rate audio coder motivated by new results from audi-
o > tory research. Our results show that representing audio data
%3 T -%3 I as independent components can reduce the audible noise
& « I in audio compression. The superior results of MP3 over
2 I 2 our algorithm can be argued to be because of the advanced
1 L coding algorithms used in MP3. MP3 adds very efficient

mp3 mpl ica mp3  mpl ica noise shaping algorithm, which together with huffman cod-

Fig. 3. Encoders mean ranking value with 95% confidence iNg gives superior results. We have implemented the same
interval. The left figure corresponds to encoding in 32kbps ¢oding blocks as in Layer-1. Thus, comparison with Layer

and 44.1khz sampling rate. The right figure corresponds to 1 is more appropriate. The ICA encoder had superior re-
encoding in 32kbps and 32khz Sampling rate. sults than Layer'l for different music files. This leads us to

the conclusion that using ICA might be equivalent or better

than psychoacoustic modeling.
4. EXPERIMENTS RESULTS

We compared our algorithm with two perceptual audio coders.
MPEG-1 layer 1 and MPEG-1 layer 3 (MP3) [8]. Layer 1
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