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ABSTRACT

We investigate the use of nonuniform cosine-modulated filter banks
for audio coding. A rate-distortion framework is employed, sim-
ilar to the work in [1], to select the filter bank structure from a
large library of possible frequency decompositions. A new flex-
ible frequency decomposition algorithm is proposed that jointly
optimizes the filter bank structure and the bit allocation over the
subband channels. Experimental results for both synthetic and
real audio signals are provided. The new algorithm shows signif-
icant improvements in comparison with fixed uniform frequency
decompositions, but special care has to be taken to reduce the size
of the decomposition overhead.

1. INTRODUCTION

In most of the current audio coding standards a cosine-modulated
filter bank (CMFB [2]) is employed, using either a polyphase or
lapped transform implementation. These filter banks provide a
uniform frequency decomposition, i.e. a decomposition where all
the subband channels are uniformly spaced in frequency. How-
ever, for more efficient coding of audio and speech signals, a larger
library of filter bank structures is required in order to adapt the
time-frequency resolution of the filter bank to the signal’s chang-
ing characteristics [3].

A large library of filter bank structures is for instance provided
by wavelet packets [4]. Various algorithms have been proposed
that choose the optimal wavelet packet basis and corresponding
quantizers per time segment, where optimality is defined in a rate-
distortion (R-D) sense [5]. The resulting frequency decomposi-
tions are no longer restricted to uniform band divisions. On the
other hand, for CMFBs only few algorithms exist to obtain time-
varying nonuniform frequency decompositions [6, 7]. However,
when compared to wavelet packets, CMFBs possess interesting
properties for audio coding such as good frequency selectivity and
simple design of transition filters.

In this paper, we propose a new algorithm to obtain a rate-
distortion optimal frequency decomposition of an audio signal us-
ing CMFBs. By combining techniques for the design of nonuni-
form filter banks and dynamic programming-based R-D optimiza-
tion, we construct the flexible frequency decomposition algorithm.

The organization of this paper is as follows. In Section 2
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Fig. 1. Time-frequency tilings as obtained by decomposition
algorithms. (a)Window-switching tiling (b)Single Tree tiling
(c)Flexible Frequency Decomposition tiling

some previous methods to obtain time-varying frequency decom-
positions are discussed. Section 3 describes the new algorithm in
detail. In Section 4 some examples are provided and a comparison
with fixed uniform decompositions is made. Section 5 contains the
conclusions and recommendations for future work.

2. PREVIOUS WORK

For audio coding, several methods for adapting the time-frequency
resolution of the analysis system have been proposed. In [8], the
window-switching algorithm is presented. The time-frequency res-
olution is adapted by switching the analysis block length, typi-
cally between a long-duration/high-frequency resolution mode and
a short-duration/low-frequency resolution mode. The short win-
dow applied to a frame containing a transient will tend to mini-
mize the temporal spread of quantization noise (which results in a
reduction of pre-echos). Furthermore, it is desirable to constrain
the high bit rates associated with transients to the shortest possible
temporal regions only.

Although implemented in most of the current audio coding
standards, the window-switching technique has some drawbacks.
For instance, special transition windows have to be employed when
switching between resolutions. This introduces extra coder delay
and the spectral properties of these windows are poor compared
to those of the original windows [9]. Moreover, the resulting fre-
quency decompositions are still uniform and therefore limited in
their ability to model non-stationary fragments correctly. See Fig-
ure 1a for an example of the time-frequency tilings that can be
obtained using window-switching.

A frequency-varying decomposition method based on wavelet
packets (WP) is disclosed in [10], where theSingle Treealgorithm
jointly finds the WP basis and bit allocation that are optimal in a
rate-distortion sense. A Lagrange optimization technique is em-
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Fig. 2. A decompositionSk is a collection of adjacent (nonuni-
form) subband channelss1, . . . , sp.

ployed that searches along the convex hull of the R-D curve to
determine the jointly optimal WP basis and corresponding quan-
tizer choices. However, the use of wavelet packets in the Single
Tree algorithm has several drawbacks. First of all, the frequency
decompositions are limited to dyadic intervals (i.e. binary decom-
positions) only. Figure 1b shows an example of a tiling that can be
obtained, while Figure 1c shows a tiling that cannot be achieved
with the Single Tree algorithm. Secondly, carefully designed fil-
ters are needed at the segment boundaries [11] when the Single
Tree is combined with time-segmentation algorithms. Moreover,
the subband filters have poor frequency responses due to the cas-
caded implementation of the WP filter bank.

Some work on a frequency-varying CMFB has been reported
in [12]. However, this algorithm starts from a decomposition that
resembles the critical band structure. Within each critical band,
only binary decompositions are possible.

3. FLEXIBLE FREQUENCY DECOMPOSITION

Given anM -channel uniform CMFB, we want to minimize the to-
tal distortion over all possible frequency decompositions and all
possible ways of quantizing the corresponding subband signals
such that the total required bit rate does not exceed a certain tar-
get rateRt. If we limit ourselves to the case where every possible
decomposition consists of subband channels having a bandwidth
that is an integer multiple of a predefined minimum bandwidth
(i.e. the bandwidth of the filters of the underlying uniform CMFB),
this problem becomes the frequency equivalent of the flexible time
segmentation algorithm proposed in [1].

To state the problem more formally we introduce some no-
tation. LetS = {S1, . . . , S2M−1} be the set of all possible fre-
quency decompositions, whereSk = {s1, . . . , sp} is a collection
of adjacent (nonuniform) frequency intervals. Figure 2 shows an
example of such a decomposition. Furthermore, assume that we
are given a set of quantizers{qn} to quantize the subband samples
in a decomposition and letQ = {Ql, . . . , QN} denote the set of
all possible ways of quantizing the different decompositionsSk,
whereQl = {q1(s1), . . . , qp(sp)}. The problem that we want to
solve can then be expressed as

min
S

min
Q

D(Sk, Ql) (1)

subject to R(Sk, Ql) ≤ Rt.

Clearly, Eq. 1 can be solved by introducing a Lagrange multiplier
λ ≥ 0 and solving the unconstrained minimization problem

min
S

min
Q

J(λ) = min
S

min
Q

p∑

i=1

Ji(λ, si, qi(si)), (2)

where we assume that rate and distortion are additive over the sub-
band channels.

Solving Eq. 2 directly would require an exhaustive search of
computational complexityO(2M ). However, if we can assume
that the different subband channels are mutually uncorrelated, the
search for the optimal quantizer strategy given a particular decom-
position can be done on a channel-by-channel basis, that is,

min
Q

p∑

i=1

Ji(λ, si, qi(si)) =

p∑

i=1

min
qi(si)

Ji(λ, si, qi(si)). (3)

This assumption is the key step in reducing the search complexity
since we now can solve Eq. 2 using the dynamic programming
technique [13], which results in a computational complexity of
O(M2).

The optimal frequency decomposition is now found recursively.
Let Jk,l denote the Lagrangian cost for encoding the frequency
rangesk,l = [ π

M
k, π

M
l). Then, at each iterationi, the best fre-

quency decomposition of the interval[0, π

M
i) is found by solving

J
∗
0,i = min

0≤k≤i
(J∗

0,k + Jk,i), i = 1, . . . , M, (4)

whereJ∗
0,i is the minimum cost for coding the interval[0, π

M
i).

Figure 2 illuminates this procedure. After having foundJ∗
0,M

we can easily determine the optimal frequency decomposition by
backtracking all the optimal split positions.

Obviously, if we do not know the rightλ in advance, we have
to repeat the aforementioned procedure for different values ofλ

in order to determine the optimalλ (i.e. the one that gives rise to
R = Rt). Since the rate is a convex function of the distortion,
efficient algorithms exist to find the optimalλ in a few iterations,
e.g. the bisection method [10].

The computation of the Lagrangian costs for solving Eq. 4
can become very complex. In general, if we replace two adjacent
subband channels by two double-bandwidth channels, the perfect
reconstruction property is lost so that the other channel filters have
to be modified as well and thus the subband signals. A complete
signal transformation is then necessary for each and every possi-
ble decomposition,2M−1 in total, which is unacceptable in most
applications.

If the subband merging technique presented in [7] is employed,
we can reduce the number of required signal transformations to
only one, since the other decompositions can be derived by a sim-
ple post-processing of the subband signals of the underlying uni-
form CMFB. This is the main reason for applying this technique
to the design of nonuniform frequency decompositions.

It is important to note that the merging operation does not re-
duce the number of channels by itself. For example, merging2
adjacent channels results in2 double-bandwidth channels, each
having a different time localization. See Figure 4 for an example.
As a result, in order to find the optimal bit allocation for a par-
ticular frequency intervalsk,l we need different quantizers for the
subband channels that constitute the interval under consideration.

Summarizing, the flexible frequency decomposition algorithm
can be implemented as follows:
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Fig. 3. Dynamic Programming is employed to search iteratively
for the optimal decomposition

1. Fork ∈ {1, 2, . . . , M}, compute every possible decompo-
sitionSk of the frequency interval[0, π

M
k).

2. For every decompositionSk, compute all possible ways
Ql = {q1(s1), . . . , qp(sp)} of quantizing thei subband
samples and record the resulting distortions and bit rates.

3. For an initial valueλ, find the optimal decompositionS∗
0,i

of the interval[0, π

M
k), resulting in the minimum costJ∗

0,i

for i = 1, . . . , M , whereJ∗
0,0 = 0.

4. Find the optimal value ofλ, that corresponds to the target
rateRt, using the bisection algorithm [10].

3.1. Reduction of Algorithmic Complexity

Several steps can be undertaken to reduce the complexity of the al-
gorithm. For instance, instead of considering every possible com-
bination of subband filters, we can limit the number of adjacent
channels merged to powers of2. As shown in [7], this restriction
results in orthonormal nonuniform CMFBs, assuming that the un-
derlying uniform CMFB is also orthonormal. Orthonormal filter
banks are desirable, since in the quantization distortion can then
be evaluated in the frequency domain only, so that the inverse fil-
ter bank operation is not needed at the encoder.

A second reduction in complexity is obtained by setting an
upperbound on the number of adjacent channels that are merged.
However, this restriction does not necessarily lead to a severe degra-
dation of performance, because the time-frequency localization of
filters obtained by merging a large number of subbands is subopti-
mal.

3.2. Coding of Side Information

The decoder has to be informed about the selected filter bank struc-
ture. This structure can be represented as a binary sequence of
lengthM − 1, where a one denotes a split between adjacent sub-
band filters and a run ofm zeros denotes thatm + 1 adjacent
subband filters are merged. As shown in [14], the information rate
for such sequences is close to1 bit/sample, even if we restrict the
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Fig. 4. Resolution switching for2 filters with subband merging
(a)Magnitude response of unmerged filters (b)Magnitude response
of merged filters (c)Time localization of unmerged filters (d)Time
localization of merged filters

maximum number of channels to be merged significantly. Such a
decomposition overhead is clearly unacceptable. However, initial
coding experiments showed that using simple Huffman coding of
the runlengths of ones and zeros already reduces the overhead by
a factor5, resulting in an overhead rate of0.2 bit/sample.

4. EXPERIMENTAL RESULTS

The flexible frequency decomposition algorithm was implemented
in a generic CMFB-based audio codec. TheM subband samples
were scaled by a single scale factor (the largest absolute sample
value). A normalized quantizer was employed, where the quan-
tizer resolution for quantizing the subband signals was varied ac-
cording to the allocated number of bits.

Figure 5 demonstrates the algorithm performance for a1st-
order AR signal withρ = 0.9. The subband samples from a16-
channel filter bank are coded at a target rateRt of 24 bits using
8 different quantizer resolutions. Clearly, the use of a variable
frequency decomposition results in a better modelling of the signal
and a higher SNR. In the example given, pre-echos are reduced
significantly.

Table 1. A comparison between fixed uniform decomposition and
variable nonuniform decomposition. Average segmental SNRs are
presented. The first column shows the results for a fixed uniform
decomposition coded at1.5 bit/sample. The second contains the
SNRs for variable decompositions coded at1.5 bit/sample, while
the last column presents the result for a fixed uniform decomposi-
tion coded at1.7 bit/sample.

Fragment Fixed (1.5) Variable (1.5) Fixed (1.7)
Castanets 11.7 17.7 13.3

Suzan Vega 19.4 22.8 21.6
German Male 24.8 27.71 27.6

Several audio fragments taken from the SQAM [15] refer-
ence disc were coded using the aforementioned coding scheme
and compared for both fixed uniform and variable nonuniform
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Fig. 5. A comparison between fixed uniform and variable
nonuniform decomposition. (a)Original (solid) and recon-
structed (dashed) signal for uniform decomposition (b)Uniform
filter bank and signal magnitude response (c)Original (solid)
and reconstructed (dashed) signal for nonuniform decomposition
(d)Nonuniform filter bank and signal magnitude response

decompositions. The filter bank used to obtain the uniform fre-
quency decomposition and applied in the subband merging algo-
rithm was a512-channel uniform CMFB. The target rate was set
to 1.5 bit/sample for both cases, resulting in a decomposition over-
head of0.2 bit/sample.

Table 1 shows the resulting average segmental SNRs for three
cases. The second column shows the SNR for the uniform de-
composition case, while the third column presents the SNR for the
nonuniform decomposition, where we did not include the over-
head rate. Clearly, a significant improvement in SNR is obtained
for all fragments. To compare these result to the case where we
could spent an extra0.2 bit/sample for the fixed uniform decom-
position, the last column shows the SNRs. It is clear that for some
fragments (e.g. German Male Speech) a further reduction of the
overhead rate is necessary.

5. CONCLUDING REMARKS

A new algorithm for rate-distortion optimal frequency decomposi-
tions using cosine-modulated filter banks was proposed. The flex-
ible frequency decomposition algorithm jointly optimizes the fil-
ter bank structure and the bit allocation over the subband chan-
nels. The decomposition overhead was reduced by a simple en-
tropy coder. Experimental results for both synthetic and real audio
signals showed that the new algorithm outperforms a fixed uniform
frequency decomposition.

The new algorithm is currently being compared to the exist-
ing algorithms. Further reduction of the decomposition overhead
is necessary to ensure an increase of SNR for all audio signals.
Moreover, the incorporation of a perceptual distortion metric that
considers both frequency and temporal masking is planned to em-
ploy the algorithm in a perceptual audio coder. The flexible fre-
quency decomposition algorithm can then easily be combined with
the window-switching technique to increase the adaptive nature of
the time-frequency analysis.
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