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ABSTRACT

Note onsets mark the beginning of attack transients, short
areas of a note containing rapid changes of the signal spec-
tral content. Detecting onsets is not trivial, especially when
analysing complex mixtures. Applications for note onset
detection systems include time stretching, audio coding and
synthesis. An alternative to standard energy-based onset de-
tection is proposed by using phase information. It is sug-
gested that by observing the frame-by-frame distribution of
differential angles, the precise moment when onsets occur
can be detected with accuracy. Statistical measures are used
to build the detection function. The system is tested and
tuned on a database of complex recordings.

1. INTRODUCTION

Providing an adequate explanation of what onset means is a
difficult task. Let us start with a simple definition: the onset
is the precise moment when a new event begins. This imme-
diately raises the need for a definition of event on this con-
text. [1] defines an event as an auditory phenomenon that
shows continuity for, at least, the smallest duration that can
be perceived. Under this definition, musical events may in-
clude expressive features, timbre changes and notes. In this
paper we are only concerned with the detection of onsets
related to the latter. Applications for note onset detection
systems include time stretching, audio coding and synthe-
sis.

A note can be divided into two main components: the
steady state and a transients (plus noise) component. We
will assume transients and steady state as two separate, se-
quentially occurring components of an event. Transients
precede the steady state of the signal, when the signal is
stationary and predictable. They are usually short and con-
tain rapid changes of the signal spectra. Because of the un-
predictability of such changes, they are difficult to model.
Onsets mark the beginning of notes, thus marking the be-
ginning of attack transient regions.

The task of detecting onsets is not trivial. The bound-
aries between notes and different types of events are often
ill-defined. The physics of the instruments and recording

environments create artifacts that can be easily mistaken for
onsets. Unsurprisingly, when dealing with polyphonic mix-
tures, the detection of onsets becomes more complex.

Robust onset detection depends on the understanding of
the characteristics of transients. Attack transients are char-
acterised by an steep increase in the note’s energy profile.
The more impulsive the signal’s components the more sud-
den the increase becomes. Their duration is short, introduc-
ing significant changes into the signal. The proliferation of
elements whose values are completely unexpected is more
likely during the attack. Finally, transients are followed by
the steady-state region of the note. Chaotic components fol-
lowed by stable ones hint at the possibility of a note.

2. PHASE-BASED ONSET DETECTION

Energy-based algorithms are usually fast and easy to imple-
ment [2, 3]. However, their effectiveness decreases when
transients of the signal are not pronounced (i.e. non per-
cussive sounds) and when energy bursts of different events
overlap in polyphonic mixtures. We propose an alterna-
tive to this by using phase information. The phase carries
all the timing information of an audio signal. It is usually
ignored when performing spectral analysis. Transients are
well-localised events in time, hence we suggest that phase
analysis can return more meaningful results for the detec-
tion of new events than solely relying on energy values. Fur-
thermore, as analysing phase implies a type of tonal analy-
sis, changes that are not as noticeable as energy bursts may
still be successfully detected as pitch bursts.

The proposed onset detection algorithm builds upon a
method for phase-based transient / steady-state (TSS) sepa-
ration [4]. The data produced by the separation algorithm is
analysed using statistical methods. By relying on the statis-
tics of our data distribution we intend to generalise our anal-
ysis to a large variety of signals. The statistical analysis
produces a detection function from which the final results
are obtained. In the following, a detailed explanation of the
process is provided.
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2.1. TSS separation

Let us define a time-domain signal s(n), whose STFT is
defined as:

S(n, k) =

∞∑

g=−∞

s(g)w(n − g)e−j2πgk/N (1)

where k = 0, 1, . . . , N − 1 is the frequency bin index, g

is the summation index and w(n) is a finite-length sliding
window. S(n, k) can also be defined in terms of its magni-
tude |S(n, k)| and phase ϕ(n, k) (whose unwrapped version
is denoted as ϕ̃(n, k)). Let n = mR where m is the hop
number and R is the hop size. According to phase vocoder
theory, if presented with a perfect sinusoid in ideal condi-
tions, then we might expect the current phase of the kth bin
to be equal to the target phase:

ϕ̃t(m, k) = ϕ̃(m − 1, k) + ΩkR (2)

where Ωk is the frequency of the kth sinusoid. However,
real sounds in real conditions fail to comply with this, and
instead we might expect our unwrapped estimated phase to
be the target phase plus a phase deviation ϕ̃d(m, k). This
deviation can be calculated as:

ϕ̃d(m, k) = princarg[ϕ̃(m, k) − ϕ̃t(m, k)] (3)

where princarg is the principal argument function mapping
the phase to the [−π, π] range.

The instantaneous frequency of the kth sinusoid can be
defined as the rate of angular rotation, i.e. the unwrapped
phase difference ∆ϕ(m, k) divided by the time between
successive frames [5]:

fi(m, k) =
∆ϕ(m, k)

2πR
fs (4)

where fs is the sampling frequency. The unwrapped phase
difference is simply the difference between consecutive es-
timated unwrapped phases.

Consider the behaviour of the individual kth sinusoid.
If the sinusoid is stable, it is expected that the instantaneous
frequency at hop m will be close to the instantaneous fre-
quency at hop (m − 1). Inversely, if the sinusoid is not
stable (i.e. when a new, unpredictable event occurs), the
variation between these two frequencies increases. This is
illustrated in Fig. 1. Note how the instantaneous frequen-
cies of fundamental and the first two partials vary around
onset time. This can be expressed by defining an instan-
taneous frequency difference between consecutive frames
∆fi(m, k). the closeness of this difference to zero is an in-
dicator of the stability of the sinusoid. It is proportional to
dϕ̃, geometrically seen as the differential angle between tar-
get and current phase. Then, by using equations 2, 3 and 4,
we can measure this “differential angle” as:

dϕ̃ = princarg[ϕ̃(m, k)−2ϕ̃(m−1, k)+ϕ̃(m−2, k)] (5)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.2

−0.1

0

0.1

0.2

(a
) o

rig
in

al
 s

ig
na

l
(b

) S
pe

ct
ro

gr
am

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1000

2000

3000

4000

5000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
200

400

600

800

(c
) I

ns
t. 

fre
qu

en
cy

time (secs)

fundamental 

2nd harmonic 

3rd harmonic 

Fig. 1. Instantaneous frequencies (c) of fundamental and
first two partials of the note depicted in (a).

By thresholding this angle, effective TSS separation can be
achieved [4, 6]. Instead, we suggest that by observing the
frame-by-frame distribution of differential angles for all k,
a detection function can be created that indicates the precise
moment when an onset occurs. Statistical analysis methods
are used for this task.

2.2. Statistical analysis

Let us consider all the bin angular changes in one frame
as a data set X , such that x ∈ X are within the [−π, π]
range. The probability density function (PDF) f(x) can be
observed by generating a histogram from X . Fig. 2 shows a
sequence of PDF’s around a note onset. It can be observed
(Fig. 2(a) to (b) and (j) to (l)) that in the absence of tran-
sients, f(x) closely resembles a normal distribution: uni-
modal, bell-shaped and symmetrical about the mean. How-
ever, when transients occur, due to the non-stationarity of
the signal, the difference between target and actual angu-
lar position increases, thus the data-set becomes dispersed
across the phase range. The spread causes a slight flatness
at the top of the distribution, and a decrease of the height
of its lobe. This is illustrated in Figure 2(c) and (d), and
is particularly noticeable in the former. Immediately af-
ter, at the beginning of the steady-state, target and current
angular position become closer. The distribution presents
a large concentration of zero-phase values, increasing the
sharpness and height of f(x). Figures 2(e) to (i), depict this
behaviour.

To quantify this observation, the spread of the distribu-
tions is measured. The standard deviation σ is used. A
sequence of σ values for a music signal is shown in Fig-
ure 3(b). It characterises onsets as sharp-peak / deep-valley
pairs. However, as can be observed, the standard deviation
presents a noisy profile that affects the accuracy of the de-
tection. Alternatively the Interquartile range (IQR) is cal-
culated. For this, the data-set is divided in two equal-sized
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Fig. 2. Sequence of PDF’s around onset time
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Fig. 3. standard deviation (b), IQR (c) and kurtosis (d) of a
test signal (a).

groups at the median. The medians of both, low and high
groups are calculated and denoted Q1 and Q3 respectively.
The IQR is obtained as:

IQR ≡ Q3 − Q1 (6)

Figure 3(c) shows the IQR sequence of the test signal. The
profile is less spiky than its predecessor’s. The IQR is less
sensitive to small variations in the distribution’s spread than
the standard deviation. These observations are consistent in
several test audio files, hence the use of IQR is favoured.

2.3. Shape and kurtosis

In real recordings, phase misalignment between composing
sinusoids of a note cause the differential angular distribu-
tion to spread. This is critical when notes evolve for a long
time, and the partial’s incoherence becomes evident. In this
case, measuring spread is not robust for onset detection. To
overcome this, the analysis of the distribution’s spread is
complemented with the analysis of the shape of the distri-

bution. The aim is to identify the steady-state that follows
the transient.

Kurtosis is the normalised fourth central moment of a
distribution and is denoted as γ2. It measures the flatness or
peakedness of the distribution in relation to a normal distri-
bution. The Fisher kurtosis (a common implementation), is
defined as:

γ2 ≡
µ4(µ)

(µ2(µ))2
− 3 =

µ4(µ)

σ4
− 3 (7)

µ4(µ) denotes the fourth central moment. According to this
definition, kurtosis decreases for flat PDFs (platy-kurtic)
and increases for sharply peaked PDFs (lepto-kurtic). This
is well adjusted to our needs. At the beginning of the steady-
state of a note the difference between target and actual pha-
ses becomes minimal. Thus, the population concentrates
close to the centre of the distribution (increasing the sharp-
ness of its lobe).

The kurtosis successfully represents this characteristic
as can be seen in Figure 3(d). We propose that by detecting
peaks in the kurtosis profile, the beginning of the steady-
state of a note can be accurately detected. Then, by match-
ing each detection to the closest preceding peak in the IQR
profile, precise onset times can be pin-pointed.

3. PEAK-PICKING

A peak-picking algorithm is implemented that selects peaks
above a dynamic threshold. Each value of the dynamic
threshold δt is calculated as the weighted median of an H-
length section of the kurtosis around the corresponding fra-
me, such that:

δt(m) = Ct median γ2(km), km ∈ [m−
H

2
,m+

H

2
] (8)

Ct is a predefined weighting value. Low values of Ct in-
crease the number of detections (false included), while high
values of Ct make the system more strict. Detected peaks
must be separated by, at least, a minimum distance. When
several peaks are detected within the minimum distance,
only the highest is kept as a valid onset.

4. RESULTS

A small database of commercial recordings was used to test
the system’s performance. It consists of a number of short
segments of different styles of music whose onsets have be-
ing hand-labelled (a broad style classification can be seen in
Table 1). The database contains 324 onsets, both in solo per-
formances and in complex mixtures. Correct matches imply
that target and detected onsets are within 50ms of each other
(this accounts for the uncertainty, as to precise location, in
the hand-labelling process).
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Fig. 4. Percentage of good detections against percentage of
false positives for various Ct values

Our first test aims to find the optimal value for Ct and
to evaluate the capabilities of our detection function. Fig. 4
shows the relationship between good detections and false
positives for different values of Ct. Detections are made
over the complete database. It can be observed that good
detection rates between 80-90% can be obtained at a cost of
around 10% rate of false positives. This is very high when
considering the variety and complexity of the signals in-
volved. A system tuned for an specific type of music might
generate even better results. By using the value of Ct that
corresponds to the “elbow” of the curve, we maximise cor-
rect detections.

Having selected an optimal value for Ct, tests are per-
formed over the database. Table 1 shows results according
to style. Numbers in the table correspond to percentages of
good detection (GD), false positives (FP) and false negatives
(FN). Onsets are evenly distributed between different styles.
It can be seen that detection rates are high for solo instru-
ments (even for non-percussive instruments such as the vio-
lin), with a relatively low cost in false detections. However,
as the complexity of the signals increase (i.e. jazz and pop
music with vocals), high detection rates are accompanied
with higher rates of false positives. A particular case, that
of pop rock music with vocals, is singled out as the worst
scenario. The features of the singed voice create a num-
ber of situations when onsets cannot be properly accounted
for (i.e. sibilance, the percussive sound of a ’t’ at the end
of a word, etc) due to phase distortion. The system some-
times fails to resolve these situations. This is a difficulty
also present during the hand labelling of those signals.

5. CONCLUSIONS

A new approach is proposed for the detection of note onsets
in music signals. It is an alternative to standard energy-
based methods in that it uses the phase of the signal for
the detection. Phase vocoder theory is used to generate
frame-by-frame statistical distributions of differential an-
gles. The kurtosis and the IQR of the distributions are mea-

STYLE % GD % FP % FN
solo violin 81.72 3.80 18.28
solo piano 91.83 6.25 8.16
solo tabla 92.68 7.32 7.32
jazz trio 84.85 9.68 15.15
pop rock 87.50 16.95 12.50
pop rock + vocals 90.32 26.32 9.68

Table 1. Onset Detection Results

sured to quantify the distribution’s behaviour around onset
times. The obtained detection functions allow high detec-
tion rates as tested with a database of complex real record-
ings including both percussive and non-percussive (i.e. vi-
olin, voice) instruments. Results could be improved by tun-
ing the system for specific styles of music.
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