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ABSTRACT points of every chorus section in real-world audio signals and can

This paper describes a method for obtaining a list of chorus (re- detect modulated chorus sections. Furthermore, because it detects
frain) sections in compact-disc recordings of popular music. The chorus sections by analyzing various repeated sections in a song,
detection of chorus sections is essential for the computational mod-it can generate an intermediate-result list of repeated sections that
eling of music understanding and is useful in various applications, usually reflect the music structure of the song; for example, the
such as automatic chorus-preview functions in music browsers orrepetition of the structure like the verse A, verse B, and chorus is
retrieval systems. Most previous methods detected as a chorus aften found in the list.
repeated section of a given length and had difficulty in identifying The following sections describe the problems dealt with, spec-
both ends of a chorus section and in dealing with modulations (key ify the RefraiD method in detail, and show experimental results
changes). By analyzing relationships between various repeatedndicating that the method is robust enough to detect the correct
sections, our method calléREfraiD can detect all the chorus sec-  chorus sections in 80 of 100 songs of a popular-music database.
tions in a song and estimate both ends of each section. It can also
detect modulated chorus sections by introducing a similarity that 2. CHORUS-SECTION DETECTING PROBLEM

enables modulated repetition to be judged correctly. ExperlmentaIGiVen an audio signal of a song, we want to obtain a list of all the

[eezgt%;Vggr?egfgﬁé?ﬂ?su;é; c?nast?r? %%eo?q%\g ;E?Itgi_h's method de-cy, s sections without using any prior information about the spec-

tral characteristics of chorus sections. Because the chorus sections
are usually the most repeated sections in popular music, the ba-
1. INTRODUCTION sic idea behind dealing with this problem is to find various groups
Chorus (refrain) sections of popular music are the most represen-of repeated sections and then output the group that appears most
tative and prominent thematic sections in the music structure of afrequently. It is, however, generally difficult to find the repeated
song, and human listeners can easily understand where the chorusections automatically because they do not completely match each
sections are because these sections are most repeated and mermather. The main issues can be summarized as follows:
rable portions of a song. Their automatic detection is essential for [Problem 1] Acoustic features and similarity measure

building a computational model that can understand musical au-
dio signals in a human-like fashion, and is useful in various prac-
tical applications. In music browsers or music retrieval systems,
it enables a user to quickly preview a chorus section as an “audio
thumbnail” in order to find a desired song. It can also increase
the efficiency and precision of music retrieval systems by enabling
them to match a query with only the chorus sections.

Most previous chorus-detection methods [1, 2, 3] obtained a

Whether or not one section is the repetition of another must be
judged on the basis of the similarity between acoustic features of
those sections. The simple power spectrum or MFCC features
are not powerful tools for this judgment because they are liable
to change considerably when arrangements of accompaniments
or melody lines are changed after repetition.

[Problem 2] Repetition-judgment criterion

The appropriate criterion of the similarity for judging repeti-

tion depends on the song. For a song containing many-repeated
accompaniment phrases, for example, only a section with very
high similarity should be considered the chorus-section repeti-
tion. For a song containing a chorus section with accompani-
ments changed after repetition, on the other hand, a section with
somewhat lower similarity can be considered the chorus-section
repetition. Because a criterion hand-tuned for a few songs is not
robust for a large song set, the criterion must be adjusted auto-

single segment from several chorus sections by detecting arepeated
section of a given length as the most representative of a song. Lo-
gan and Chu [1] developed a method using clustering techniques
and Hidden Markov Models to categorize short segments (1 sec)
in terms of their acoustic features and then regarded the most fre-
quent category as a chorus. Bartsch and Wakefield [2] developed
a method that calculated the similarity between acoustic features
of beat-length segments obtained by beat tracking and found the

given-length segment with the highest similarity averaged over its

matically for each song.

segment. Cooper and Foote [3] developed a method that calcu{Problem 3] Estimating both ends of repeated sections

lated the similarity between acoustic features of short frames (100
ms) and found the given-length segment with the highest similar-
ity between it and the whole song. None of the previous methods,

however, addressed the problem of detecting all the chorus sec-
tions in a song. They also assumed that the output segment length

is given and did not identify both ends of a chorus section. While

It is necessary to estimate the start and end points of repeated
sections by analyzing relationships between various repeated
sections. For a song whose structure is (A B C B C C), for ex-
ample, the repetition of (B C) would be obtained by a simple
repetition search. In this case, both ends of this C can be esti-
mated by using the information of the repetition of the last C.

chorus sections are sometimes modulated (the key is changed) durfProblem 4] Detecting the modulated repetition

ing their repetition in a song, the previous methods were not able
to deal with modulated repetition.

This paper describes a method, call@dfraiD (Refran
Detecting Method), that exhaustively detects all the chorus sec-
tions appearing in a song. It can obtain a list of the start and end
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Although the modulated repetition is difficult to detect because

acoustic features are not similar after a modulation, this detec-
tion is important because the repetition of chorus sections (es-
pecially around the end of song) sometimes includes the modu-
lation.
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Fig. 1. Overview of the chorus-section detecting method RefraiD.

3. CHORUS-SECTION DETECTING METHOD:
REFRAID

Figure 1 showsan overview of the RefraiD method. It first extracts
a 12-dimensional feature vector called a chroma vector, which is
robust for small changes of accompaniments, from each frame of
an input audio signal and calculates the similarity between these
vectors (solution to Problem 1). Each element of the chroma vec-
tor corresponds to one of the 12 pitch classes and is the sum of
power at frequenciesof itspitch classover six octaves. The method
then lists pairs of repeated sections by using an adaptive repetition-
judgment criterion that is configured by an automatic threshold se-
lection method based on a discriminant criterion [4] (solution to
Problem 2). To organize common repeated sections into groups
andtoidentify both ends of each section, it integratesthose pairs by
analyzing their relationships over the whole song (solution to Prob-
lem 3). Because each element of a chroma vector correspondsto a
different pitch class, a before-modulation chromavector iscloseto
the after-modul ation chorus vector whose elements are shifted (ex-
changed) by the pitch difference of the key change. By considering
twelve kinds of shifts (pitch differences), it then calculates 12 sets
of the similarity between non-shifted and shifted chroma vectors,
lists pairs of repeated sections from those sets, and integrates all of
them (solution to Problem 4). Finally, it evaluates the possibility
of being chorus sections for each group and outputs the repeated
sections with the highest possibility as well as other groups of re-
peated sections.

3.1. Extracting acoustic features

The 12-dimensional chroma vector 9(t) isextracted from the power
spectrum, W,,(f, t) at thelog-scalefrequency f at timet, calculated
by using the short-time Fourier transform (STFT). Each element
of ¥(t) correspondsto a pitch classc (¢ = 1,2,...12) in the equal
temperament and is represented as v.(t):

Octy

w= Y [ eramweor o
h=Oct ¥ —°
The BPF.. 1,(f) is abandpass filter that passes at the log-scale fre-
quency F. 5, (in cents') of pitch class ¢ in octave position h?
F.. = 1200h + 100(c — 1) o)
and is defined using a Hanning window as follows:

IFrequency fu; in hertz is converted to frequency feent in cents so that
there are 100 cents to a tempered semitone and 1200 to an octave: feent =
1200100,(firz / (440 x 259,

2|n the Shepard's helix representation of pitch perception [5], ¢ and h
respectively correspond to chroma and height.

_1 2 (f — (Fen — 100))
BPF. 1 (f) 5 (1 cos 200 ) . (3
Thisfilter is applied to octaves from Oct, to Octy.

In the current implementation, the input signal is digitized at
16 bit / 16 kHz, and then the STFT with a 4096-sample Hanning
window is calculated by using the Fast Fourier Transform (FFT).
Since the FFT frameis shifted by 1280 samples, the discrete time
step (1 frame shift) is80 ms. The Oct. and Octy, the octave range
for the summation of Equation (1), are respectively 3 and 8. This
covers six octaves (130 Hz to 8 kHz).

There are several advantages to the chroma vector.® Because
it captures the overall harmony (pitch-class distribution), it can
be similar even if accompaniments or melody lines are changed
in some degree after repetition. In fact, we have confirmed that
the chroma vector is effective for identifying chord names. The
chromavector also enables the modul ated repetition to be detected
as described in Section 3.5.

3.2. Calculating the similarity
The similarity r(¢, [) between the chromavectors #(t) and ¥(t — [)

is defined as W sty
r(t,l)=1— max.. v.(t) \/Tn;xc ve(t—1) 7 @

where! (0 < [ < t) isthelag. Since the denominator v/12 isthe
length of the diagonal line of the 12-dimensional hypercube with
edgelength 1, r(¢, 1) satisfies0 < r(¢,1) < 1.

3.3. Listing therepeated sections

Pairs of repeated sections are obtained from »(¢,1). Considering
that (¢, 1) isdrawn within the right-angled isoscel estriangle in the
two-dimensional time-lag space as shown in Figure 2, the method
finds line segments that are parallel to the horizontal time axis and
indicate consecutive regions with high r(¢,7). When the section
between the time 71 and T2 is denoted [T'1, T'2], each line seg-
ment between the points (71, L1) and (72, L1) is represented as
(t=[T1,72],1 = L1) and meansthat the section [T'1, T'2] issim-
ilar to (i.e., is the repetition of) the section [T1 — L1,72 — L1].
In other words, aline segment indicates a repeated-section pair.
Tofind (¢t = [T1,T2],] = L1) in r(t,1), the possibility of
containing line segments at thelag I, R.u: (¢, 1), is evaluated at the
current time ¢ (e.g., a the end of song) as follows (Figure 2):

" r(r, 1)
Rau(t, 1) = / %Y 4. (5)
1l l n —l

Before this calculation, r(¢,1) is normalized by subtracting the
mean of (¢, 1) in the adjacent area while removing noises. The
method then picks up high peaks above a threshold Thr of
Rau(t, 1) for searching theline segments, after smoothing R (¢, 1)
by using a moving average filter. Because the threshold Thg is
closely related to the repetition-judgment criterion that should be
adjusted for each song, we use an automatic threshold selection
method based on adiscriminant criterion [4]. When dichotomizing
the peak heightsinto two classes by athreshold, the optimal thresh-
old is obtained by maximizing the discriminant criterion measure
that is defined by the following between-class variance:

0% = wiwa(ps — pa2)’, (6)
where w; and w; are the probabilities of class occurrence (the num-
ber of peaksin each class/ the total number of peaks), and i1 and
w2 are the mean of peak heightsin each class.

The line segments are finally searched in the direction of
the horizontal time axis on the one-dimensional function r(r, L1)
(L1 < 7 < t) at thelag L1 of each high peak. After smoothing

3The chroma vector is similar to the chroma spectrum [6] that is used
in reference [2], although its formulation is different.
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Fig. 2. A plot of line segments, the similarity r(¢, [), and the possi-
bility Rau(t, 1) of containing line segments. The similarity (¢, )
is defined in the right-angled isosceles triangle in the lower right-
hand corner. The actual r(¢, [) is noisy and ambiguous and usually
contains many line segments irrelevant to chorus sections.

r(7, L1) by using a moving average filter, the method obtains line
segments on which the smoothed r(7, L1) is above a threshold.
This threshold is also adjusted by using the automatic threshold
selection method.

3.4. Integrating therepeated sections

Since each line segment indicates just a pair of repeated sections,
it is necessary to organize into a group the line segments that have
common sections. Firgt, line segments that have almost the same
section [Ts;, Te;] are organized into a group, which is represented
as¢i = ([Ts;, Tei],I's), where i = {35 | j =1,2,..., M} (M;
isthe number of line segments) is aset of the segment’slag ~;; —
corresponding to the high peaks in R, (t,1) — in this group. A
set of these groupsisdenotedby ® = {¢; | i =1,2,..., N} (N is
the number of al the groups).

By using (¢, 1) just within [Ts;, Te;] of each group ¢, line seg-
ments are then searched again in order to recover some line seg-
ments that the process described in Section 3.3 did not find. In
Figure 2, for example, we can expect that two line segments cor-
responding to the repetition of the first and third C and the rep-
etition of the second and fourth C, which overlap with the long
line segment corresponding to the repetition of ABCC, are found
here even if they were hard to be found in the process described in
Section 3.3. For this purpose, starting from

Te;
&mm@=/eiﬁﬁ—w @)
1 Te—Ts

instead of R, (t,1), the method performs the aimost same peak-
picking process described in Section 3.3 and formsanew set I; of
the peaks v;; in Rits, Te;1({). 1t then removes inappropriate peaks
ineach I'; asfollows: it removes too many peaks that are equally
spaced, a peak whose line segment has a highly deviated (7, v;;)
(Tsi < 7 < Te;), and a peak that is too close to other peaks and
makes sections overlap.

Finally, by using thelag ~v;; corresponding to each peak of I';,
the method searches for a group whose section is[Ts; — i;, Te; —
~i;] (i.e., is shared by the current group I";) and integrates it with
I; if itisfound. They areintegrated by adding all the peaks of the
found group to I'; after adjusting the lag values (peak positions);
the found group is then removed. In addition, if there is a group
that has a peak indicating the section [Ts; — vi;, Te; — i5], it too
isintegrated.

3.5. Detecting the modulated repetition

The processes described above do not deal with the modulation
(key change), but they can easily be extended to it. A modula-
tion can be represented by the pitch difference of its key change,
tr (0,1, ..., 11), which denotes the number of tempered semitones.
For example, tr = 9 means the modulation of nine semitones up-
ward or the modulation of three semitones downward.

One of the advantages of the 12-dimensional chroma vector
o(t) is that tr of the modulation can naturally correspond to the
amount by which its 12 elements are shifted. When %(¢) is the
chroma vector of a performance and %(t)’ is the chroma vector of
the performancethat ismodulated by tr semitones upward from the
original performance, they satisfy

i(t) = ST, ®)
where S is a shift matrix defined by
0 1 0 .- .- 0
0o 0 1 o -0
S = o o‘ ]_I o ’ ©)
(0 0 1
0 0

To detect the modulated repetition, we can define 12 kinds of
extended similarity for each tr as follows:

sUawy w—1)
(t l) 1 maxXe ve(t) maXe ve(t—1) (10)
Tr(l, ) = 1 — .
V12

Starting from each r(t,1), the processes of listing and in-
tegrating the repeated sections are performed as described in
Sections 3.3 and 3.4, except that the threshold adjusted at tr = 0
is used for the processes at tr # 0. After these processes, 12 sets
of line-segment groups are obtained for 12 kinds of tr. To orga-
nize non-modul ated and modul ated repeated sectionsinto the same
groups, the method integrates several groups across all the sets if
they share the same section.

Hereafter, we use ® = {¢;|¢: = ([Ts;, Te;], ')} to denote the
groups of line segments obtained from all thetr. By unfolding each
line segment of ~y;; to the pair of repeated sections indicated by it,
we can obtain

A :{([PSU,PGU],AZ]) |j=17 27---7Mi+1}7 (11)
where [Ps;;, Pe;;] = [Ts; — 7is, Te; — 7i5] represents one of the
unfolded repeated section, and )\;; isits possibility of being chorus
sections. The \;; is defined as the mean of the similarity 7 (¢, {)
on the corresponding line segment. For j = M; + 1, we define
[Psi;, Pe;;] and \;; asfollows: [Ps;;, Pe;;] = [Ts;, Tes] and A5 =
max, 7 Air.. The modulated sections are labeled with their tr for
reference.

3.6. Selecting the chorus sections

After evaluating thetotal possibility v; of being chorus sectionsfor
each group (¢, /\;), the group m that maximizes v; is selected as
the chorus sections: m = argmax; v;. Thetota possibility v; isa
sum of \;; weighted by the length of the section and is defined by

M;+1
v; = <Z )\ij) log %, (12
J=1

where Die, is a constant (1.4 sec). Before calculating v;, the pos-

sibility A;; of each repeated section is adjusted according to the

following three assumptions (heuristics):

[Assumption 1] The length of the chorus section has an appropri-
ate range (in the current implementation, 7.7 to 40 sec). If the
length is out of the range, \;; issetto 0.

[Assumption 2] When there is a repeated section that is long
enough to belikely to correspond to thelong-term repetition like
theverse A, verse B, and chorus, the chorus section is likely to
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Tablel. Resultsof evaluating RefraiD: the number of songswhose
chorus sections were detected correctly under 4 sets of conditions.

Fig. 3. The detected chorus sections of the database song RWC-
MDB-P-2001 No. 18. The horizontal axisis the time (sec) corre-
sponding to the whole song. The window above shows the power.
The top line in the window below shows the list of the detected
chorus sections, which were correct for this song and the last of
which was modulated. The bottom five lines show the list of vari-
ous repeated sections.

be near itsend. If there is arepeated section [Ps;;, Pe;;] whose
end is close to the end of another long repeated section (longer
then 50 sec), its \;; is doubled.

[Assumption 3] Because a chorus section tends to have two half-
length repeated sub-sectionswithin its section, asection that has
those sub-sections is likely to be the chorus section. If there
is a repeated section [Ps;;, Pe;;] that has those sub-sections in
another group, half of the mean of the possibility of those two
sub-sectionsis added to its ;5.

These assumptions fit alarge class of popular music.

4. EXPERIMENTAL RESULTS

The RefraiD method has been implemented in a real-time system
that takes a musical audio signal as input and outputs the list of
the detected chorus sections. Along the real-time audio input, the
system displays visualized lists of chorus sections and other re-
peated sections, which are obtained by using just the past input and
are considered most probable every moment.* A chorus-section
viewer that shows those visualized lists as shown in Figure 3 and
enables a user to play back a selected section has also been devel-
oped.

The system was tested on 100 songs of the popular-music date-
base “ RWC Music Database: Popular Music” (RWC-MDB-P-
2001 No. 1—-100) [7], which is an original database available to
researchers around the world. These 100 songs were originaly
composed, arranged, performed, and recorded in a way that re-
flected the complexity and diversity of real-world music. We com-
pared the system output with the correct chorus sections that were
hand-labeled by using a music-structure labeling editor. The de-
gree of matching between the detected and correct chorus sections
was evaluated by using the F-measure [8], which is the harmonic
mean of the recall rate (R) and the precision rate (P):

2RP

F-measure = RiD (23)
_ sum of the length of chorus sections detected correctly
R= - (14)
sum of the length of correct chorus sections
p= sum of the length of chorus sections detected correctly (15)

sum of the length of chorus sections detected
The system output of a song was judged to be correct if its F-
measure is more than 0.75 under the condition that estimated tr
of modulations must be correct.

The results are listed in Table 1. The method dealt correctly
with 80 of 100 songs (the average of the F-measure of the 80 songs
was 0.938). The main reasons that it made mistakes were that the
number of repetition of chorus sections was not more than that of

“4Further information, including video clips, isavailable at the fol lowing
URL: http://staff.aist.go.jp/m.goto/| CASSP2003/

Condition (enable:O, disable: X)

Modulation detection o) X o) X
Use of assumptions2 & 3 ¢} @) X X

Number of songs (out of 100) | 80 74 72 68

other sections and that an accompaniment phrase was repeated for
most of a song. Among the 100 songs were 10 songs with mod-
ulated chorus sections, and the outputs of 9 of them were correct.
When the function detecting the modul ated repetition was disabl ed,
only 74 songs were dealt with correctly. On the other hand, when
assumptions 2 and 3 were not used, the performance fell as shown
by the entriesin the rightmost two columns of Table 1. Therewere
22 songs in which accompaniments or melody lines of a repeated
chorus section were considerably changed; the outputs of 21 of
them were correct and the repeated chorus section itself (i.e., tr)
was correctly detected in 16 songs.

5. CONCLUSION

We have described the RefraiD method that detects the chorus sec-
tions in real-world popular-music audio signals. It basicaly re-
gards the most repeated sections as the chorus sections. Analysis
of the relationships between various repeated sections enables all
the chorus sections to be detected with their start and end points.
In addition, the introduction of the similarity between non-shifted
and shifted chroma vectors makes it possible to detect modulated
chorus sections, which previous methods could not detect. Exper-
imental results show that the method is robust enough to detect the
correct chorus sectionsin 80 of 100 songs.

The RefraiD method aso has relevance to music summariza-
tion methods [9, 10, 11], none of which addressed the problem of
detecting al the chorus sections. One of the chorus sections de-
tected by our method can be regarded as a song summary, as could
another long repeated section in the intermediate-result list of re-
peated sections.

Our repetition-based approach was proven effectivein popular
music. To improve the performance of the method, however, we
will need to use prior information about the spectral characteristics
of chorus sections. We also plan to experiment with other music
genres and extend the method to be widely applicable.
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