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ABSTRACT
This paper describes a method for obtaining a list of chorus (re-

frain) sections in compact-disc recordings of popular music. The
detection of chorus sections is essential for the computational mod-
eling of music understanding and is useful in various applications,
such as automatic chorus-preview functions in music browsers or
retrieval systems. Most previous methods detected as a chorus a
repeated section of a given length and had difficulty in identifying
both ends of a chorus section and in dealing with modulations (key
changes). By analyzing relationships between various repeated
sections, our method calledRefraiD can detect all the chorus sec-
tions in a song and estimate both ends of each section. It can also
detect modulated chorus sections by introducing a similarity that
enables modulated repetition to be judged correctly. Experimental
results with a popular-music database show that this method de-
tects the correct chorus sections in 80 of 100 songs.

1. INTRODUCTION

Chorus (refrain) sections of popular music are the most represen-
tative and prominent thematic sections in the music structure of a
song, and human listeners can easily understand where the chorus
sections are because these sections are most repeated and memo-
rable portions of a song. Their automatic detection is essential for
building a computational model that can understand musical au-
dio signals in a human-like fashion, and is useful in various prac-
tical applications. In music browsers or music retrieval systems,
it enables a user to quickly preview a chorus section as an “audio
thumbnail” in order to find a desired song. It can also increase
the efficiency and precision of music retrieval systems by enabling
them to match a query with only the chorus sections.

Most previous chorus-detection methods [1, 2, 3] obtained a
single segment from several chorus sections by detecting a repeated
section of a given length as the most representative of a song. Lo-
gan and Chu [1] developed a method using clustering techniques
and Hidden Markov Models to categorize short segments (1 sec)
in terms of their acoustic features and then regarded the most fre-
quent category as a chorus. Bartsch and Wakefield [2] developed
a method that calculated the similarity between acoustic features
of beat-length segments obtained by beat tracking and found the
given-length segment with the highest similarity averaged over its
segment. Cooper and Foote [3] developed a method that calcu-
lated the similarity between acoustic features of short frames (100
ms) and found the given-length segment with the highest similar-
ity between it and the whole song. None of the previous methods,
however, addressed the problem of detecting all the chorus sec-
tions in a song. They also assumed that the output segment length
is given and did not identify both ends of a chorus section. While
chorus sections are sometimes modulated (the key is changed) dur-
ing their repetition in a song, the previous methods were not able
to deal with modulated repetition.

This paper describes a method, calledRefraiD (Refrain
Detecting Method), that exhaustively detects all the chorus sec-
tions appearing in a song. It can obtain a list of the start and end

points of every chorus section in real-world audio signals and can
detect modulated chorus sections. Furthermore, because it detects
chorus sections by analyzing various repeated sections in a song,
it can generate an intermediate-result list of repeated sections that
usually reflect the music structure of the song; for example, the
repetition of the structure like the verse A, verse B, and chorus is
often found in the list.

The following sections describe the problems dealt with, spec-
ify the RefraiD method in detail, and show experimental results
indicating that the method is robust enough to detect the correct
chorus sections in 80 of 100 songs of a popular-music database.

2. CHORUS-SECTION DETECTING PROBLEM

Given an audio signal of a song, we want to obtain a list of all the
chorus sections without using any prior information about the spec-
tral characteristics of chorus sections. Because the chorus sections
are usually the most repeated sections in popular music, the ba-
sic idea behind dealing with this problem is to find various groups
of repeated sections and then output the group that appears most
frequently. It is, however, generally difficult to find the repeated
sections automatically because they do not completely match each
other. The main issues can be summarized as follows:
[Problem 1] Acoustic features and similarity measure

Whether or not one section is the repetition of another must be
judged on the basis of the similarity between acoustic features of
those sections. The simple power spectrum or MFCC features
are not powerful tools for this judgment because they are liable
to change considerably when arrangements of accompaniments
or melody lines are changed after repetition.

[Problem 2] Repetition-judgment criterion
The appropriate criterion of the similarity for judging repeti-
tion depends on the song. For a song containing many-repeated
accompaniment phrases, for example, only a section with very
high similarity should be considered the chorus-section repeti-
tion. For a song containing a chorus section with accompani-
ments changed after repetition, on the other hand, a section with
somewhat lower similarity can be considered the chorus-section
repetition. Because a criterion hand-tuned for a few songs is not
robust for a large song set, the criterion must be adjusted auto-
matically for each song.

[Problem 3] Estimating both ends of repeated sections
It is necessary to estimate the start and end points of repeated
sections by analyzing relationships between various repeated
sections. For a song whose structure is (A B C B C C), for ex-
ample, the repetition of (B C) would be obtained by a simple
repetition search. In this case, both ends of this C can be esti-
mated by using the information of the repetition of the last C.

[Problem 4] Detecting the modulated repetition
Although the modulated repetition is difficult to detect because
acoustic features are not similar after a modulation, this detec-
tion is important because the repetition of chorus sections (es-
pecially around the end of song) sometimes includes the modu-
lation.
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Fig. 1. Overview of the chorus-section detecting method RefraiD.

3. CHORUS-SECTION DETECTING METHOD:
REFRAID

Figure 1 shows an overview of the RefraiD method. It first extracts
a 12-dimensional feature vector called a chroma vector, which is
robust for small changes of accompaniments, from each frame of
an input audio signal and calculates the similarity between these
vectors (solution to Problem 1). Each element of the chroma vec-
tor corresponds to one of the 12 pitch classes and is the sum of
power at frequencies of its pitch class over six octaves. The method
then lists pairs of repeated sections by using an adaptive repetition-
judgment criterion that is configured by an automatic threshold se-
lection method based on a discriminant criterion [4] (solution to
Problem 2). To organize common repeated sections into groups
and to identify both ends of each section, it integrates those pairs by
analyzing their relationships over the whole song (solution to Prob-
lem 3). Because each element of a chroma vector corresponds to a
different pitch class, a before-modulation chroma vector is close to
the after-modulation chorus vector whose elements are shifted (ex-
changed) by the pitch difference of the key change. By considering
twelve kinds of shifts (pitch differences), it then calculates 12 sets
of the similarity between non-shifted and shifted chroma vectors,
lists pairs of repeated sections from those sets, and integrates all of
them (solution to Problem 4). Finally, it evaluates the possibility
of being chorus sections for each group and outputs the repeated
sections with the highest possibility as well as other groups of re-
peated sections.

3.1. Extracting acoustic features

The 12-dimensional chroma vector�v(t) is extracted from the power
spectrum, Ψp(f, t) at the log-scale frequency f at time t, calculated
by using the short-time Fourier transform (STFT). Each element
of �v(t) corresponds to a pitch class c (c = 1, 2, . . . 12) in the equal
temperament and is represented as vc(t):

vc(t) =

OctH∑
h=OctL

∫ ∞

−∞
BPFc,h(f ) Ψp(f, t) df. (1)

The BPFc,h(f ) is a bandpass filter that passes at the log-scale fre-
quency Fc,h (in cents1) of pitch class c in octave position h2

Fc,h = 1200h + 100(c − 1) (2)
and is defined using a Hanning window as follows:

1Frequency fHz in hertz is converted to frequency fcent in cents so that
there are 100 cents to a tempered semitone and 1200 to an octave: fcent =

1200 log2(fHz / (440 × 2
3
12 −5)).

2In the Shepard’s helix representation of pitch perception [5], c and h
respectively correspond to chroma and height.

BPFc,h(f ) =
1
2

(
1 − cos

2π(f − (Fc,h − 100))
200

)
. (3)

This filter is applied to octaves from OctL to OctH.
In the current implementation, the input signal is digitized at

16 bit / 16 kHz, and then the STFT with a 4096-sample Hanning
window is calculated by using the Fast Fourier Transform (FFT).
Since the FFT frame is shifted by 1280 samples, the discrete time
step (1 frame shift) is 80 ms. The OctL and OctH, the octave range
for the summation of Equation (1), are respectively 3 and 8. This
covers six octaves (130 Hz to 8 kHz).

There are several advantages to the chroma vector.3 Because
it captures the overall harmony (pitch-class distribution), it can
be similar even if accompaniments or melody lines are changed
in some degree after repetition. In fact, we have confirmed that
the chroma vector is effective for identifying chord names. The
chroma vector also enables the modulated repetition to be detected
as described in Section 3.5.

3.2. Calculating the similarity

The similarity r(t, l) between the chroma vectors �v(t) and �v(t− l)
is defined as

r(t, l) = 1 −
∣∣ �v(t)

maxc vc(t) −
�v(t−l)

maxc vc(t−l)

∣∣
√

12
, (4)

where l (0 ≤ l ≤ t) is the lag. Since the denominator
√

12 is the
length of the diagonal line of the 12-dimensional hypercube with
edge length 1, r(t, l) satisfies 0 ≤ r(t, l) ≤ 1.

3.3. Listing the repeated sections

Pairs of repeated sections are obtained from r(t, l). Considering
that r(t, l) is drawn within the right-angled isosceles triangle in the
two-dimensional time-lag space as shown in Figure 2, the method
finds line segments that are parallel to the horizontal time axis and
indicate consecutive regions with high r(t, l). When the section
between the time T1 and T 2 is denoted [T1, T 2], each line seg-
ment between the points (T 1, L1) and (T 2, L1) is represented as
(t = [T 1, T2], l = L1) and means that the section [T 1, T 2] is sim-
ilar to (i.e., is the repetition of) the section [T1 − L1, T2 − L1].
In other words, a line segment indicates a repeated-section pair.

To find (t = [T1, T 2], l = L1) in r(t, l), the possibility of
containing line segments at the lag l, Rall(t, l), is evaluated at the
current time t (e.g., at the end of song) as follows (Figure 2):

Rall(t, l) =

∫ t

l

r(τ, l)
t − l

dτ. (5)

Before this calculation, r(t, l) is normalized by subtracting the
mean of r(t, l) in the adjacent area while removing noises. The
method then picks up high peaks above a threshold ThR of
Rall(t, l) for searching the line segments, after smoothing Rall(t, l)
by using a moving average filter. Because the threshold ThR is
closely related to the repetition-judgment criterion that should be
adjusted for each song, we use an automatic threshold selection
method based on a discriminant criterion [4]. When dichotomizing
the peak heights into two classes by a threshold, the optimal thresh-
old is obtained by maximizing the discriminant criterion measure
that is defined by the following between-class variance:

σ2
B = ω1ω2(µ1 − µ2)2, (6)

where ω1 and ω2 are the probabilities of class occurrence (the num-
ber of peaks in each class / the total number of peaks), and µ1 and
µ2 are the mean of peak heights in each class.

The line segments are finally searched in the direction of
the horizontal time axis on the one-dimensional function r(τ, L1)
(L1 ≤ τ ≤ t) at the lag L1 of each high peak. After smoothing

3The chroma vector is similar to the chroma spectrum [6] that is used
in reference [2], although its formulation is different.
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Fig. 2. A plot of line segments, the similarity r(t, l), and the possi-
bility Rall(t, l) of containing line segments. The similarity r(t, l)
is defined in the right-angled isosceles triangle in the lower right-
hand corner. The actual r(t, l) is noisy and ambiguous and usually
contains many line segments irrelevant to chorus sections.

r(τ, L1) by using a moving average filter, the method obtains line
segments on which the smoothed r(τ, L1) is above a threshold.
This threshold is also adjusted by using the automatic threshold
selection method.

3.4. Integrating the repeated sections

Since each line segment indicates just a pair of repeated sections,
it is necessary to organize into a group the line segments that have
common sections. First, line segments that have almost the same
section [Tsi, Tei] are organized into a group, which is represented
as φi = ([Tsi, Tei], Γi), where Γi = {γij | j = 1, 2, . . . , Mi} (Mi

is the number of line segments) is a set of the segment’s lag γij —
corresponding to the high peaks in Rall(t, l) — in this group. A
set of these groups is denoted by Φ = {φi | i = 1, 2, . . . , N} (N is
the number of all the groups).

By using r(t, l) just within [Tsi, Tei] of each group φi, line seg-
ments are then searched again in order to recover some line seg-
ments that the process described in Section 3.3 did not find. In
Figure 2, for example, we can expect that two line segments cor-
responding to the repetition of the first and third C and the rep-
etition of the second and fourth C, which overlap with the long
line segment corresponding to the repetition of ABCC, are found
here even if they were hard to be found in the process described in
Section 3.3. For this purpose, starting from

R[Tsi,Tei](l) =

∫ Tei

Tsi

r(τ, l)
Tei − Tsi

dτ (7)

instead of Rall(t, l), the method performs the almost same peak-
picking process described in Section 3.3 and forms a new set Γi of
the peaks γij in R[Tsi,Tei](l). It then removes inappropriate peaks
in each Γi as follows: it removes too many peaks that are equally
spaced, a peak whose line segment has a highly deviated r(τ, γij)
(Tsi ≤ τ ≤ Tei), and a peak that is too close to other peaks and
makes sections overlap.

Finally, by using the lag γij corresponding to each peak of Γi,
the method searches for a group whose section is [Tsi − γij , Tei −
γij] (i.e., is shared by the current group Γi) and integrates it with
Γi if it is found. They are integrated by adding all the peaks of the
found group to Γi after adjusting the lag values (peak positions);
the found group is then removed. In addition, if there is a group
that has a peak indicating the section [Tsi − γij , Tei − γij], it too
is integrated.

3.5. Detecting the modulated repetition

The processes described above do not deal with the modulation
(key change), but they can easily be extended to it. A modula-
tion can be represented by the pitch difference of its key change,
tr (0, 1, . . . , 11), which denotes the number of tempered semitones.
For example, tr = 9 means the modulation of nine semitones up-
ward or the modulation of three semitones downward.

One of the advantages of the 12-dimensional chroma vector
�v(t) is that tr of the modulation can naturally correspond to the
amount by which its 12 elements are shifted. When �v(t) is the
chroma vector of a performance and �v(t)′ is the chroma vector of
the performance that is modulated by tr semitones upward from the
original performance, they satisfy

�v(t) .=. Str�v(t)′, (8)
where S is a shift matrix defined by

S =




0 1 0 · · · · · · 0
0 0 1 0 · · · 0
.
.
.

. . .
. . .

. . .
.
.
.

0 · · · · · · 0 1 0
0 · · · · · · · · · 0 1
1 0 · · · · · · · · · 0


 . (9)

To detect the modulated repetition, we can define 12 kinds of
extended similarity for each tr as follows:

rtr(t, l) = 1 −

∣∣∣ Str�v(t)
maxc vc(t) −

�v(t−l)
maxc vc (t−l)

∣∣∣
√

12
. (10)

Starting from each rtr(t, l), the processes of listing and in-
tegrating the repeated sections are performed as described in
Sections 3.3 and 3.4, except that the threshold adjusted at tr = 0
is used for the processes at tr �= 0. After these processes, 12 sets
of line-segment groups are obtained for 12 kinds of tr. To orga-
nize non-modulated and modulated repeated sections into the same
groups, the method integrates several groups across all the sets if
they share the same section.

Hereafter, we use Φ = {φi|φi = ([Tsi, Tei], Γi)} to denote the
groups of line segments obtained from all the tr. By unfolding each
line segment of γij to the pair of repeated sections indicated by it,
we can obtain

Λi = {([Psij, Peij], λij) | j = 1, 2, . . . , Mi + 1}, (11)
where [Psij, Peij] = [Tsi − γij , Tei − γij] represents one of the
unfolded repeated section, and λij is its possibility of being chorus
sections. The λij is defined as the mean of the similarity rtr(t, l)
on the corresponding line segment. For j = Mi + 1, we define
[Psij , Peij] and λij as follows: [Psij, Peij] = [Tsi, Tei] and λij =
maxMi

k=1 λik. The modulated sections are labeled with their tr for
reference.

3.6. Selecting the chorus sections

After evaluating the total possibility νi of being chorus sections for
each group (φi, Λi), the group m that maximizes νi is selected as
the chorus sections: m = argmaxi νi. The total possibility νi is a
sum of λij weighted by the length of the section and is defined by

νi =

(
Mi+1∑
j=1

λij

)
log

Tei − Tsi

Dlen
, (12)

where Dlen is a constant (1.4 sec). Before calculating νi, the pos-
sibility λij of each repeated section is adjusted according to the
following three assumptions (heuristics):
[Assumption 1] The length of the chorus section has an appropri-

ate range (in the current implementation, 7.7 to 40 sec). If the
length is out of the range, λij is set to 0.

[Assumption 2] When there is a repeated section that is long
enough to be likely to correspond to the long-term repetition like
the verse A, verse B, and chorus, the chorus section is likely to
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Fig. 3. The detected chorus sections of the database song RWC-
MDB-P-2001 No. 18. The horizontal axis is the time (sec) corre-
sponding to the whole song. The window above shows the power.
The top line in the window below shows the list of the detected
chorus sections, which were correct for this song and the last of
which was modulated. The bottom five lines show the list of vari-
ous repeated sections.

be near its end. If there is a repeated section [Psij , Peij] whose
end is close to the end of another long repeated section (longer
then 50 sec), its λij is doubled.

[Assumption 3] Because a chorus section tends to have two half-
length repeated sub-sections within its section, a section that has
those sub-sections is likely to be the chorus section. If there
is a repeated section [Psij, Peij] that has those sub-sections in
another group, half of the mean of the possibility of those two
sub-sections is added to its λij .

These assumptions fit a large class of popular music.

4. EXPERIMENTAL RESULTS

The RefraiD method has been implemented in a real-time system
that takes a musical audio signal as input and outputs the list of
the detected chorus sections. Along the real-time audio input, the
system displays visualized lists of chorus sections and other re-
peated sections, which are obtained by using just the past input and
are considered most probable every moment.4 A chorus-section
viewer that shows those visualized lists as shown in Figure 3 and
enables a user to play back a selected section has also been devel-
oped.

The system was tested on 100 songs of the popular-music data-
base “RWC Music Database: Popular Music” (RWC-MDB-P-
2001 No. 1−100) [7], which is an original database available to
researchers around the world. These 100 songs were originally
composed, arranged, performed, and recorded in a way that re-
flected the complexity and diversity of real-world music. We com-
pared the system output with the correct chorus sections that were
hand-labeled by using a music-structure labeling editor. The de-
gree of matching between the detected and correct chorus sections
was evaluated by using the F-measure [8], which is the harmonic
mean of the recall rate (R) and the precision rate (P ):

F-measure =
2RP

R + P
(13)

R =
sum of the length of chorus sections detected correctly

sum of the length of correct chorus sections
(14)

P =
sum of the length of chorus sections detected correctly

sum of the length of chorus sections detected
. (15)

The system output of a song was judged to be correct if its F-
measure is more than 0.75 under the condition that estimated tr
of modulations must be correct.

The results are listed in Table 1. The method dealt correctly
with 80 of 100 songs (the average of the F-measure of the 80 songs
was 0.938). The main reasons that it made mistakes were that the
number of repetition of chorus sections was not more than that of

4Further information, including video clips, is available at the following
URL: http://staff.aist.go.jp/m.goto/ICASSP2003/

Table 1. Results of evaluating RefraiD: the number of songs whose
chorus sections were detected correctly under 4 sets of conditions.

Condition (enable:◦, disable:×)
Modulation detection ◦ × ◦ ×
Use of assumptions 2 & 3 ◦ ◦ × ×
Number of songs (out of 100) 80 74 72 68

other sections and that an accompaniment phrase was repeated for
most of a song. Among the 100 songs were 10 songs with mod-
ulated chorus sections, and the outputs of 9 of them were correct.
When the function detecting the modulated repetition was disabled,
only 74 songs were dealt with correctly. On the other hand, when
assumptions 2 and 3 were not used, the performance fell as shown
by the entries in the rightmost two columns of Table 1. There were
22 songs in which accompaniments or melody lines of a repeated
chorus section were considerably changed; the outputs of 21 of
them were correct and the repeated chorus section itself (i.e., tr)
was correctly detected in 16 songs.

5. CONCLUSION

We have described the RefraiD method that detects the chorus sec-
tions in real-world popular-music audio signals. It basically re-
gards the most repeated sections as the chorus sections. Analysis
of the relationships between various repeated sections enables all
the chorus sections to be detected with their start and end points.
In addition, the introduction of the similarity between non-shifted
and shifted chroma vectors makes it possible to detect modulated
chorus sections, which previous methods could not detect. Exper-
imental results show that the method is robust enough to detect the
correct chorus sections in 80 of 100 songs.

The RefraiD method also has relevance to music summariza-
tion methods [9, 10, 11], none of which addressed the problem of
detecting all the chorus sections. One of the chorus sections de-
tected by our method can be regarded as a song summary, as could
another long repeated section in the intermediate-result list of re-
peated sections.

Our repetition-based approach was proven effective in popular
music. To improve the performance of the method, however, we
will need to use prior information about the spectral characteristics
of chorus sections. We also plan to experiment with other music
genres and extend the method to be widely applicable.
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