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ABSTRACT

This paper describes a systematic approach to specification and
compilation of different physical modeling schemes particularly
for sound synthesis studies. First we formulate theoretically a
unified way of constructing physical interaction models which in-
clude elements that use both wave variables and Kirchhoff vari-
ables. These elements can be applied to build 1-D and multidi-
mensional structures as well as lumped element models. In addi-
tion, typical signal processing algorithms are supported. A soft-
ware environment (Block Compiler) has been developed, allowing
for high-level object-based specification of physical models and
their compilation to efficient code for execution.

1. INTRODUCTION

Physical modeling and model-based sound synthesis of musical in-
struments and other sound sources have become an important part
of computer music and modern audio [11]. Different approaches
and modeling techniques have been proposed to describe and re-
alize spatiotemporal physical behavior that is found in musical in-
struments. For efficient computation these models are formulated
through DSP algorithms.

While in abstract synthesis through DSP algorithms the in-
teraction and signal flow are mostly directed (one-directional), in
more physical approaches, such as digital waveguides [11], wave
digital filters [5, 9, 1], finite difference models [12, 7, 2], etc., the
interaction is two-directional. In such cases we can make distinc-
tion between models with Kirchhoff variables (K-variables) and
wave variables (W-variables). This distinction is based on the
fact that in a Kirchhoff formulation the total observable variable
is considered, while with wave variables the Kirchhoff variable is
divided into one (or more) directed wave component pair.

As a continuation of studies in [8, 3, 4], in this paper we are
particularly interested to combine K-models and W-models in a
coherent way while building practical models. Finite difference
time domain (FDTD) models are basically physical models where
a Kirchhoff variable, such as force or pressure, is taken as a free
physical variable and the complementary one (such as velocity
or volume velocity) is determined through a parameter, such as
impedanceZ or its inverse, admittance G = 1=Z . The relation of
FDTD models and wave-based models is discussed and the com-
bination of such submodels is studied in particular. The utilization
of wave digital filter (WDF) components is also discussed.

The organization of the paper is as follows. First we compare
the wave-based digital waveguides and their FDTD counterparts.
Then we connect them together in a seamless way, including scat-
tering junctions and multidimensional structures. Lumped element
modeling is also discussed briefly, and finally a software environ-

ment is described which supports high-level object-based specifi-
cation of physical models and their compilation to efficient code
for real-time and non-realtime execution.

2. WAVE-BASED VS. FDTD MODELS

In a one-dimensional lossless medium the wave equation is written
ytt = c

2
yxx (1)

where y is (any) wave variable, subscript tt refers to second partial
derivative in time t, xx second partial derivative in place variable
x, and c is speed of wavefront in the medium of interest. For exam-
ple in a vibrating string we are primarily interested in transversal
wave motion for which c =

p
T=�, where T is tension force and

� is mass per unit length of the string [6].
The two common forms of discretizing the wave equation for

numerical simulation are through traveling wave solution and by
finite difference formulation.

2.1. Wave-based modeling

The traveling wave formulation is based on the d’Alembert solu-
tion of propagation of two opposite direction waves, i.e.,

y(t; x) =
!

y (t� x=c) +
 

y (t+ x=c) (2)

where the arrows denote the right-going and the left-going compo-
nents of the total waveform. Assuming that the signals are band-
limited to half of sampling rate, we may sample the traveling waves
without losing any information by selecting T as the sample inter-
val andX the position interval between samples so that T = X=c.
Sampling is applied in a discrete time-space grid in which n and
m are related to time and position, respectively. The discretized
version of Eq. (2) becomes [11]:

y(n;m) =
!

y (n �m) +
 

y (n+m) (3)

It follows that the wave propagation can be computed by updating
state variables in two delay lines by

!

y k;n+1 =
!

y k�1;n and
 

y k;n+1 =
 

y k+1;n (4)

i.e., by simply shifting the samples to the right and left, respec-
tively. This kind of discrete-time modeling is called Digital Wave-
guide (DWG) modeling [11].

The next step is to take into account the global physical con-
straints of continuity by Kirchhoff rules. This means to formu-
late the scattering junctions of interconnected ports, with given
impedances and wave variables at related ports. For a scattering
junction of Fig. 1, when the physical variables force F and veloc-
ity V are used and a series junction 1 impedance model of N ports
is utilized [11], the Kirchhoff constrains are

1Parallel junctions and admittance models are not discussed for brevity.
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Fig. 1. Series junction of impedances Z i with associated velocity
waves indicated. A direct force input Fext is also attached.
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Fig. 2. N-port scattering junction (three ports are shown) of ports
with impedances Zi. Incoming velocities are V +

i and outgoing
velocities V +

i . W-port 1 terminated by impedanceZ1.

V1 = V2 = : : : = VN = VJ (5)

F1 + F2 + : : :+ FN = Fext (6)

where VJ is the common velocity of coupled branches and F ext is
an external force to the junction. When port velocities are repre-
sented by incoming wave componentsV +

i
, outgoing wave compo-

nents by V �i , impedances attached to each port by Z i, and

Vi = V
+

i + V
�

i and F
+

i = ZiV
+

i (7)

the junction velocity VJ can be obtained [11] as:

VJ =
1

Ztot

(Fext + 2

N�1X

i=0

ZiV
+

i ) (8)

where Ztot =
PN�1

i=0
Zi is the sum of all impedances to the

junction. Outgoing velocity waves, obtained from Eq. (7), are
then V �i = VJ � V +

i . The result is illustrated in Fig. 2. When
impedances Zi are frequency-dependent, this diagram can be in-
terpreted as a filter structure where the incoming velocities are fil-
tered by the corresponding wave impedances Z i times two, and
their sum is filtered further by 1=Ztot to get the junction velocity
VJ. Displacement is obtained, for example in string modeling, by
integrating the junction velocity VJ in time.

Two special cases can be mentioned based on Eq. (8). First, a
(passive) loading impedance is the case with Z i where no incom-
ing velocity wave V +

i is associated. This needs no computation
except including Zi in Ztot because the incoming wave is zero,
see the left-hand termination in Fig. 2. Another issue is the exter-
nal force Fext effective to the junction. This is connected directly
to the summation at the junction as shown in Fig. 2.

The wave variables and impedances at ports attached to a junc-
tion can be specified in any proper transform domain, but we are
here interested in z-domain formulations for practical discrete-
time computation. Notice that the impedances in Fig. 2 can be
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Fig. 3. Digital filter structure for finite difference approximation of
a two-port scattering node with port impedancesZ1 and Z2. Only
total velocity VJ (K-variable) is explicitly available.

real-valued or frequency-dependent so that Z i and the admittance
1=
P

Zi can be realized as FIR or IIR filters, or just as real co-
efficients if all attached impedances are real. In the latter case, if
we skip the external force Fext of Eq. (8), we may write the equa-
tion using scattering parameters �i as VJ =

P
N�1

i=0
�iV

+

i
, where

�i = 2Zi=Ztot. This and other special forms of scattering are
efficient computationally when impedances are real-valued, but in
a general case it is practical to implement computation as shown
in Fig. 2 so that the term 1=

P
Zi is a common filter.

The freedom to use any impedance formulation allows also for
applying measured data, such as bridge impedance/admittance as
a part of an instrument model. The passivity condition is, as for a
scattering junction in general, that Zi are positive real. Notice also
that the realization of junction nodes as shown in Fig. 2 is general
for any linear and time invariant system approximation, also for
2-D and 3-D mesh structures.

2.2. Finite difference modeling

In the most common way to discretize the wave equation by finite
differences the partial derivatives in Eq. (1) are approximated by
second order finite differences

yxx � (2yx;t � yx��x;t � yx+�x;t)=(�x)
2 (9)

ytt � (2yx;t � yx;t��t � yx;t+�t)=(�t)
2 (10)

By selecting the discrete-time sampling interval �t to correspond
to spatial sampling interval �x, i.e., �t = c�x, and using index
notation k = x=�x and n = t=�t, Eqs. (9) and (10) result in

yk;n+1 = yk�1;n + yk+1;n � yk;n�1 (11)

which is a special case of multidimensional meshes as an FDTD
formulation [11, 10]. From form (11) we can see that a new sample
yk;n+1 at position k and time index n+1 is computed as the sum
of its neighboring position values minus the value at the position
itself one sample period earlier.

The equivalence of digital waveguides and FDTDs [1], al-
though being computationally different formulations, is also ap-
plicable to expand Eq. (11) to a scattering junction with arbitrary
port impedances. Figure 3 depicts one scattering node of a 1-D
FDTD waveguide and the way to terminate one port by impedance
Z1. There can be any number of ports attached also here as for a
DWG junction.

An essential difference between DWGs of Fig. 2 and FDTDs
of Fig. 3 is that while DWG junctions are connected through 2-
directional delay lines (W-lines), FDTD nodes have two unit de-
lays of internal memory and delay-free K-pipes connecting ports
between nodes. These junction nodes and ports are thus not di-
rectly compatible (see next subsection). One further difference,
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Fig. 4. FDTD elements (left) and DWG elements (right) forming a hybrid waveguide. Zi are wave impedances of W-lines (for DWGs) and
K-pipes (for FDTDs) between junction nodes (delimited by dashed lines). V J are junction velocities, V + and V � are wave components.
Terminations: Z1 (left) and WDF capacitor Z5 (right). Delays marked by D may be of integer or fractional length. In: F +

ext, Out: VJ;out.

in addition to algorithmic and computational precision properties,
is the possibility of ‘spurious’ responses in FDTDs, i.e., an ini-
tial state of finite energy may generate waves of infinitely expand-
ing energy in them [12]. This ‘non-physical’ behavior needs extra
computation in DWGs to create a similar behavior.

2.3. Interfacing of DWGs and FDTDs

The next question to discuss is the possibility to interface wave-
based and FDTD-based submodels. In [4] it was shown how to
interconnect a lossy 1-D FDTD waveguide with a similar DWG
waveguide into a hybrid model using a proper interconnection ele-
ment (adaptor). In a similar way, it is possible to make an arbitrary
hybrid model of K-elements (FDTD) and W-elements having ar-
bitrary wave impedances at their ports.

Figure 4 shows how this is done in a one-dimensional mod-
eling case, but each junction node might connect any number of
related ports as well, making also 2-D and 3-D meshes possible.
The left-hand sybsystem in Fig. 4 is an FDTD waveguide through
ports of specified wave impedances, and the right-hand part is a
similar formulation for a wave-based model (DWG).

The function of the KW-pipe in the middle of Fig. 4 between
the FDTD node N2 and DWG element N3 is to adapt the K-type
port of an FDTD node and the W-type port of a DWG node, and
it is delay-free. The proper functioning of the adaptor can be
shown by testing the propagation of a left- and a right-traveling im-
pulse through the adaptor. The equivalence and interfacing rules of
wave-based and K-variable based (FDTD) models allow now for
implementing mixed models where either of the approaches can
be selected according to which one is more useful in the problem
at hand.

2.4. Including lumped and nonlinear elements

As noted above, any linear and time-invariant system (1-D, mul-
tidimensional, or unstructured collection) of properly connected
blocks can be computed using the described formalism. A useful
additional formalism is to adopt Wave Digital Filters (WDF) [5, 1]
as discrete-time simulators of lumped parameter elements. Based
on wave variables, they are computationally fully compatible with
the structures described above. A WDF resistor does not add much
to systems above, but WDF capacitors and inductors, as well as
ideal transformers and gyrators, are useful components [5]. As a
physically bound choice for the case of this study, a WDF capacitor
is a feedback from V � wave of a port back to V + through a unit
delay and coefficient -1, and having a port impedance 1=2f sC ,
see the right-hand termination in Fig. 4. A WDF inductor is a
feedback through a unit delay and having a port impedance 2f sL.

Here C is capacitance, L is inductance, and f s is the sample rate
(cf. [1]). A beneficial property of these elements is, since their
wave impedances are real-valued, that junctions of such ports re-
main memoryless in the sense of Fig. 2, i.e., Zi and 1=

P
Zi are

real. On the other hand, more flexibility is achieved by higher or-
der approximations of Zi than with WDF components.

The WDF formulation helps more essentially in another prob-
lem that appears when nonlinearities or fast parametric changes
in a system are to be modeled, where delay-free loops may ap-
pear, requiring special solutions. Simply inserting an extra delay
makes the model non-physical and is a source of potential insta-
bility. Several solutions to this problem have been proposed, one
of them being to connect a nonlinear component through a WDF
adaptor so that a delay-free loop is eliminated and the structure
has the same energetic behavior as the corresponding analog sys-
tem [9]. This problem is, however out of the scope of this paper.

3. BLOCK COMPILER: OBJECT-BASED REALIZATION
OF MIXED K- AND W-MODELS

Different discrete-time approximations of wave behavior have much
in common and each of them has its advantages and drawbacks [1].
The aim of the present study was to formulate a unified approach to
W- and K-modeling and to make efficient simulation and synthesis
possible from high-level specifications.

The best features of two different programming languages were
combined in the implementation of the Block Compiler. Common
Lisp and CLOS object system was used as a high-level symbolic
processing environment and the C language for efficient numeric
computation. A short description of the Block Compiler imple-
mentation is:

� A full model specification is called a patch, which consists
of interconnected block-item units. Table 1 lists the code
specifying the waveguide structure of Fig. 4. It contains
from the left a termination Z1 , an FDTD (K-node) N1, a
K-pipe with impedance Z2, another K-node N2, an adap-
tor (KW-pipe) Z3 , a DWG node (W-node) N3, a fractional
delay-line Z4, another DWG node N4, and a WDF capaci-
tance Z5.

� The patch* macro (Table 1) first instantiates the compu-
tational blocks: K-pipes, W-lines, series connection nodes
between them, and terminating impedances, and binds these
objects to local variables for further reference. Then the
generic function connect is used to implement the inter-
connectivity between block ports. Connecting a line/pipe
port to a node creates a proper type of port for the node.
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Table 1. Lisp code specification of hybrid waveguide in Figure 4.

(patch* ((n1 (.K-node)) (n2 (.K-node)) ;; nodes 1&2
(n3 (.W-node)) (n4 (.W-node)) ;; nodes 3&4
(k2 (.k-pipe :impedance 1.0)) ;; pipe Z2
(kw (.kw-line :impedance 2.0)) ;; line Z3
(w4 (.w-line :impedance 1.0 :length 10.5))
(z1 (.Z :impedance 10.0)) ;; termination
(z5 (.C :capacitance 1.0e-3))) ;; WDF

(connect (port k2 0) n1) (connect (port k2 1) n2)
(connect (port kw 0) n2) (connect (port kw 1) n3)
(connect (port w4 0) n3) (connect (port w4 1) n4)
(connect (port z1) n1) (connect (port z5) n4)
(connect (output (.AD) 0) (force n3)) ;; input
(connect (velocity n4) (inputs (.DA)))) ;; output

Finally the sound driver input (.AD) and output (.DA) are
connected to the waveguide for real-time streaming. (There
are shorthand notations available to make the scripting less
verbose.)

� Multirate processing is available so that each block can be
given a relative sample rate.

� Macro blocks can be defined as containers of more elemen-
tary blocks. Macro definitions are flexible so that param-
eters can be given to specify the details of a macro block
during instantiation.

� Data types fshort; long; float; doubleg and correspond-
ing array types are available for signal data. Data is nor-
mally transferred between blocks in port-related global vari-
ables (synchronous data-flow). This can be optimized fur-
ther by using register variables. While data flow is (multi-
rate) synchronous, there is parameter control flow available
that may be asynchronous as well.

� When a given model specification (e.g., Table 1) is evalu-
ated as a Lisp script, an object-based patch is created and
memory is allocated for data structures. Generation of exe-
cutable code is done in the next steps:

� The patch is scheduled by walking the hierarchical structure
and ordering the elementary operations. If there are delay-
free loops or illegal structures, an error is reported.

� Each block writes inline C code into a file to create a single
function with related data and declarations. C code gen-
eration of each block class is defined in ‘pseudo-C’ which
looks like C code but data references are to Lisp. The re-
sulting C file is then compiled by a call to a C compiler.

� The function pointer of the compiled code is taken and con-
nected to the sample stream of the sound driver for real-time
processing, or it can be called in a single step mode.

� While real-time streaming is running, the patch is fully con-
trollable from Lisp, allowing for highly flexible control and
inspection of the model behavior.

The object organization of blocks in Figs. 2-4 characterizes the
object structure in BlockCompiler, i.e., the partitioning of data and
operations. A delay line element in a DWG is nothing but delaying
data and delegation of impedance changes to connectedports in the
case of parametrically controlled model (this is not shown here).
The same holds for pipes between FDTD nodes except that data
transfer is delay-free.

The principles introduced above can be applied to form ar-
bitrary networks, also multidimensional ones, of linear and time-
invariant structures, by combining the DWG, FDTD, and WDF
approaches.

The BlockCompiler prototype system works presently only on
the Macintosh OS X operating system, but all software compo-
nents (Lisp, C compiler, PortAudio sound driver) are available for
other major platforms as well. The system has been tested both
by various DSP-oriented and physical modeling tasks. It is found
highly interactive due to simple scripting of model definitions and
fast compilation to efficient run-time code. It is a flexible tool for
basic research and application development. Simulation examples
are available at ‘www.acoustics.hut.fi/software/BlockCompiler’.

3.1. Future tasks

There is presently no graphic editor for visual programming of
models. Writing a graphic editor is relatively straightforward but
tedious. Such an editor is important to users that will do easy mod-
eling using existing pre-defined blocks, although a ‘power-user’,
able to write Lisp code, can do much more advanced modeling by
textual programming.

The most essential theoretical future step will be to study sys-
tematically how to specify and automatically compile models with
nonlinear elements.
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