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ABSTRACT

Here we present a novel approach to audio signal enhancement
based on psychoacoustic principles. Specifically, we describe a
short-time spectral amplitude estimator whose form comprises a
weighted sum of the minimum mean-square error solution and the
observed spectral value, where the weighting factor is given by the
ratio of the masked threshold and this observed value. We then
explore the connection between our approach and the idea of so-
called balanced loss functions in statistics, showing the former to
be an instance of the latter with a very special choice of weight-
ing factor. Lastly, we present results indicating the relative merits
of our approach in both objective and subjective terms, as com-
pared to standard minimum mean-square error estimation under
the assumed model. Software and sound examples are available at
http://www-sigproc.eng.cam.ac.uk/ � pjw47.

1. INTRODUCTION

1.1. Short-Time Spectral Attenuation

Here we consider the task of noise reduction within the standard
engineering framework of short-time spectral attenuation. In this
method a time-varying filter is applied to the frequency-domain
transform of a noisy signal, using the overlap-add method of short-
time Fourier analysis and synthesis. The observed signal is first
divided into overlapping segments via multiplication by a smooth,
‘sliding’ window function (which is non-zero only for a duration
on the order of tens of milliseconds); the Fourier transform is then
taken on each interval. Plotted side by side, the resultant spec-
tra comprise a time-frequency representation known as the Gabor
transform, or subsampled short-time Fourier transform—the mod-
ulus of which is the well-known spectrogram. The coefficients of
this transform are attenuated to some degree in order to reduce the
noise; individual short-time intervals are then inverse-transformed,
multiplied by a smoothing window, and added together in an ap-
propriate manner to reconstruct an estimate of the original signal.

1.2. Signal Model

We assume that the observed audio time series y may be modelled
as the sum of an underlying signal x and a white, Gaussian noise
process of zero mean d. The goal is thus to reduce the noise level
of the observed data y � x � d; i.e., to provide an estimate of x.

Within the framework of short-time spectral attenuation, the
perceptual importance of spectral amplitude relative to phase [1]
has led researchers to re-cast the resultant spectral estimation prob-
lem in terms of the former quantity (see [2] and references therein).
In particular, Ephraim and Malah [2] derive an MMSE short-time
spectral amplitude estimator under the assumption that the Ga-
bor coefficients of the original signal as well as the noise may be
modelled as statistically independent, zero-mean, Gaussian ran-
dom variables. Thus the k-th observed spectral component, Yk �
Rk exp � jϑk � , is equal to the sum of the spectral components of the
signal, Xk � Ak exp � jαk � , and the noise, Dk.

This model leads to a Rayleigh distribution of spectral am-
plitudes ak and a uniform distribution of phases αk over � 0 	 2π � .
Keeping the notation of [2] for convenience, λx � k �
� E �
�Xk � 2 �
and λd � k ��� E � �Dk � 2 � denote the respective variances of the k-
th component of the signal and noise, and ak is a realisation of the
random variable Ak to be estimated. Additionally, define

1
λ � k � � 1

λx � k � � 1
λd � k �

and

υk � ξk

1 � ξk
γk; ξk � λx � k �

λd � k � γk � R2
k

λd � k � , (1)

where ξk and γk are interpreted after [2] as the a priori and a pos-
teriori signal-to-noise ratios (SNR), respectively.

1.3. Optimal Estimation

Under the assumed model, the posterior density p � ak � Yk � (follow-
ing integration w.r.t. the phase term αk) is Rician [3] with parame-
ters σ2

k � λ � k ��� 2 and s2
k � υkλ � k � :

p � ak � Yk � � ak

σ2
k

exp

���
a2

k � s2
k

2σ2
k � I0

�
aksk

σ2
k � , (2)

where In ��� � denotes the modified Bessel function of order n.
The MMSE solution of [2] is simply the first moment of (2);

when combined with the optimal phase estimator (the observed
phase ϑk [2]), it takes the form of a suppression rule, or real-valued
gain Hk applied to the observed spectral amplitude Rk:�

Ak � λ � k � 1
2 Γ � 1 � 5 � Φ � � 0 � 5 	 1;

�
υk � (3)� Hk ��� πυk

2γk � � 1 � υk � I0 � υk

2 � � υkI1 � υk

2 �! e " υk
2 , (4)
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where Γ � � � is the gamma function [4, eq. 8.310.1] and Φ � � � is the
confluent hypergeometric function [4, eq. 9.210.1].

Of course, this and other optimal estimators may also be ob-
tained directly in terms of the expected loss E � L � ak 	 âk � � Yk

�
with

respect to some posterior density p � ak � Yk � , as we now proceed to
detail.

2. A PERCEPTUALLY MOTIVATED ESTIMATOR

It is well-known that in audio signal processing applications, care-
less processing via short-time spectral attenuation may lead to un-
acceptable levels of signal distortion (see, e.g., [5, Chapter 6]).
In an attempt to remedy this shortcoming, we pursue here an ap-
proach based on auditory perception. That is to say, we con-
sider a nonnegative masked threshold mk for each point on the
time-frequency lattice defined implicitly by the parameters of the
overlap-add procedure (window type and support, amount of over-
lap, and so on), below which additive noise is taken to be inaudible.

A natural way of incorporating this masked threshold into the
restoration procedure is via the Bayesian approach hinted at ear-
lier, in which a loss function incorporating perceptual criteria may
be employed, along with a prior signal model such as that given in
Section 1.2, to determine the optimal (i.e., minimum-loss) Bayes
estimator for the quantity of interest [6].

2.1. An Approach Based on the ‘Principle of Least Processing’

An important point to note is that any processing we choose to
apply is likely to lead to a dulling, or loss of ‘naturalness’, to the
sound. This is especially true in high-fidelity applications such
as the restoration of degraded audio recordings [5]. We therefore
wish to proceed according to what one might term the ‘principle
of least processing’; i.e., that it is preferable to subject the signal
to the least amount of processing necessary.

In the context of spectral estimation, we thus seek a loss func-
tion having the characteristic that it penalises any processing to
some extent, thereby minimising the amount of attenuation applied
(while, of course, still effecting a reduction in the noise level!).
One way to accomplish this is through the consideration of percep-
tual criteria; as noise reduction inevitably occurs at the expense of
signal resolution, why not take advantage of human auditory per-
ception in order to optimise this trade-off?

In keeping with this principle, we may—for starters—choose
not to attenuate the coefficient at any lattice point whose observed
spectral energy is deemed to be masked a priori. However, this
constitutes merely a qualitative incorporation of auditory percep-
tion into the restoration process. Additionally, we may also con-
sider the quantitative integration of perceptual criteria into the es-
timation process, by way of the (a priori unknown) masked thresh-
old mk. Accordingly, we may formulate a perceptually motivated
loss function which is also consistent with the principle of least
processing as follows:

L � ak 	 âk � � �
âk

� �
1

�
mk

Rk � ak

�
mk � 2

(5)

Intuitively, (5) may be understood in the following manner:
when the relative masking level mk � Rk is small, (5) is similar to the
standard squared-error loss function, but with an extra term corre-
sponding to the masked threshold. On the other hand, as mk � Rk �
1, the resultant estimator tends toward the masked threshold mk,

reflecting our intuition that any further attenuation violates the
least processing principle. (Note that by processing only those
points whose observed spectral energy is not masked, we are ef-
fectively imposing the constraint mk � Rk � 1.)

We may now obtain the optimal Bayes estimator under the
given loss function of (5) and the assumed model of Section 1.2,
as detailed in Appendix A, in order to yield a solution of the form�

Ak � �
1

�
mk

Rk � â �k � mk
� Hk � �

1

�
mk

Rk � H �k � mk

Rk
,

where â �k is given by (3) and H �k by (4).

2.2. Balanced Loss Functions: An Alternative Interpretation

An interesting connection can be made with so-called balanced
loss functions [7], where the objective is to consider both loss due
to estimation (i.e., shrinkage) and prediction (i.e., goodness-of-fit).
In the case at hand, the form of such a function is as follows:

L � ak 	 âk � � � 1 � w � � âk

�
ak � 2 � w � âk

�
Rk � 2, (6)

where 0 � w � 1 is a weighting factor determined by the user.
Specifically, consider the weighting factor as mk � Rk; i.e., as

the relative masking level. In this case the estimator resulting from
the balanced loss function of (6) is identical to that given by the
least-processing loss function of (5). This may be verified accord-
ing to Appendix A, as differentiation identifies functions differing
by a constant.

In a similar vein, perceptually motivated subspace methods for
speech enhancement such as [8–10] seek a compromise between
noise reduction and resultant signal distortion. Our solution is also
related to the multiple-hypothesis method of [11], where a given
Gabor coefficient is assumed either to be masked or not, and the
resultant estimator is accordingly a weighted sum of the observed
spectral magnitude and some other spectral estimator which takes
into account the uncertainty of speech presence.

3. RESULTS AND CONCLUSIONS

3.1. Resultant Suppression Rules

It is instructive to compare the suppression rules resulting from (5)
with those of [6], in which a zero-loss region is determined ac-
cording to the masked threshold for a given spectral observation.
To this end, Figs. 1 and 3 compare these suppression rules as a
function of instantaneous SNR γk

�
1 and a priori SNR ξk, and

Figs. 2 and 4 compare them under the constraint γk

�
1 � ξk, in

a manner similar to simpler methods such as spectral subtraction
and Wiener filtering. (Note that in all cases the mk � 0 solution
corresponds to the MMSE suppression rule.)

An inspection indicates that the perceptually balanced sup-
pression rules shown in Figs. 1 and 2 do indeed induce less attenu-
ation than those of Fig. 3 and 4 for a given relative masking level,
in a manner consistent with the principle of least processing. This
formulation thus provides suppression rules with the same quali-
tative trends as those in [6], but without the necessity of storage
of tabulated gain values, since the solution is obtainable in closed
form. Moreover, a similar derivation in terms of the second pos-
terior moment—i.e., optimal spectral power estimation—yields a
solution consisting entirely of simple functions and mathematical
operations [12], thereby providing an ideal solution for on-line ap-
plications where speed is of the essence.
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Fig. 1. Parametric suppression rules resulting from the min-
imisation of expected loss using (5) for relative masking levels
mk � Rk �
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Fig. 2. Parametric suppression rules resulting from the min-
imisation of expected loss using (5) for relative masking levels
mk � Rk �

�
0 	 0 � 1 	�� ��� 	 1 � , with γk

�
1 � ξk

3.2. Enhancement Performance

In the interest of brevity we limit our quantitative performance
comparison here to the MMSE suppression rule of Ephraim and
Malah. In evaluating the performance of our perceptually balanced
suppression rule, we considered a variety of speech and music sig-
nals corrupted by broadband noise, the variance of which was as-
sumed to be known. Here we report results for broadband male
speech and a solo piano recording—these being typical of the re-
sults obtained across a range of examples—artificially degraded
with Gaussian noise to yield an SNR between

�
10 and 30 dB.

The signals were analysed using window lengths of 512 and
2048 samples, respectively, corresponding to durations of approxi-
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Fig. 3. Parametric suppression rules resulting from the minimisa-
tion of expected loss according to [6] for relative masking levels
mk � Rk �
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Fig. 4. Parametric suppression rules resulting from the minimisa-
tion of expected loss according to [6] for relative masking levels
mk � Rk �

�
0 	 0 � 1 	���� � 	 1 � , with γk

�
1 � ξk

mately 12 and 45 ms, and a redundancy factor of two, correspond-
ing to a 50% window overlap. In keeping with the standard ap-
proach in the literature, we first obtained an estimate of the relative
masking level via the model of [13], applied to an estimate of the
original signal obtained according to the MMSE suppression rule.

Figure 5 shows a comparison of the objective restoration qual-
ity measured in terms of SNR gain, from which it can be seen
the the perceptually balanced loss function approach often out-
performs the MMSE suppression rule. In terms of subjective
enhancement quality, we conclude that the restorations obtained
using the perceptually balanced suppression rule are more natu-
ral and less dull-sounding than those resulting from the MMSE
suppression rule. Lastly, we note that software (for the repro-
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Fig. 5. Resultant SNR gain for a music (top) and speech (bottom)
example (note difference in ordinate scales). The MMSE restora-
tion performance is indicated by the solid line, and that according
to the perceptually balanced loss function of (5) by the dashed line.

duction of these results as well as further experimentation) and
sound examples (including real-world recordings) are available at
http://www-sigproc.eng.cam.ac.uk/ � pjw47.

A. ESTIMATOR DERIVATION

The key relation to note is that given by [4, p. 737, eqn. 6.631.1],
rewritten here according to the relation I0 � z � � J0 � jz � :� ∞

0
xµe � αx2

I0 � βx � dx � Γ � κ �
2ακ Φ

�
κ 	 1;

β2

4α � , (7)

where

κ � µ � 1
2

; Reα � 0, Re � µ � ν
� � �

1.

Note that the form of the integrand in (7) is that of a Rician
density multiplied by some additional power. This is, of course,
one particular example of the integral we seek to minimise in order
to obtain the optimal Bayes estimator with respect to a given loss
function and density. Thus, with regard to the case at hand, con-
sider situations in which the loss function of interest is quadratic—
say Q � a � —yielding an expression of the form�

Q � a � aexp

� �
a2

λ � I0

�
2a � ν

λ � da. (8)

Specifically, if L � a 	 â � � Aa2 � Ba � C, then the solution of (8),
according to (7), is

A
λ2

2
Φ � 2 	 1;ν � � B

Γ � 3
2 � λ

3
2

2
Φ

�
3
2
	 1;ν � � C

λ
2

Φ � 1 	 1;ν � .
However, since Φ � α 	 α;z � � ez and Φ � α 	 γ;z � � ezΦ � γ � α 	 γ;

�
z �

by [4, p. 1086, eq. 9.212.1], this form may be reduced to the fol-
lowing:

Aλ2

2
Φ � 2 	 1;ν � � λeν

2 � BΓ
�

3
2 � λ

1
2 Φ

� �
1
2
	 1;

�
ν � � C � .

If A is not a function of â, then differentiating the above w.r.t.
â implies that its critical points satisfy

d
dâ

C � â � � �
d

dâ
B � â � Γ �

3
2 � λ

1
2 Φ

� �
1
2
	 1;

�
ν � , (9)

where we note that the latter terms on the right-hand side of (9)
comprise the MMSE spectral amplitude estimator of (3) under the
assumed model. Thus for the quadratic loss functions considered
herein, we obtain the weighted solution described in Section 2.
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