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ABSTRACT

A progressive to lossless embedded audio coder (PLEAC) has
been proposed. PLEAC is based purely on reversible transform,
which is designed to mimic the non-reversible transform in a
normal psychoacoustic audio coder as much as possible. Coupled
with a high performance embedded entropy codec, this empowers
PLEAC with both lossless capability and fine granular scalability.
The PLEAC encoder generates a bitstream that if fully decoded,
completely recovers the original audio waveform without loss.
Moreover, it is possible to scale this bitstream in a very large bi-
trate range, with granularity down to a single byte. Extensive ex-
perimental results support the superior lossless performance and
bitstream scalability of the PLEAC coder.
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1. INTRODUCTION

High performance audio codec brings digital music into reality.
Popular audio compression technologies, such as MP3, MPEG-4
audio, Real™ and Windows Media Audio (WMAT™), are usually
lossy in nature. The audio waveform is distorted in exchange for
higher compression ratio. In quality critical applications such as a
recording/editing studio, it is imperative to maintain the best
sound quality possible, i.e., the audio should be compressed in a
lossless fashion. Most lossless audio coding approaches, such as
[1]1[2][3][6], simply build upon a lossy audio coder, and further
encode the residue. The compression ratio of such approaches is
often affected by the underlying lossy coder. Since the quantiza-
tion noise in the lossy coder is difficult to model, the approaches
usually lead to inefficiency in the lossless audio coding. More-
over, it is also more complex, as it requires a base coder and a
residue coder. Some other approaches, e.g., [4], build the lossless
audio coder directly through a predictive filter and then encode
the prediction residue. The approaches may achieve good com-
pression ratio, however, it is not compatible with existing lossy
audio coding framework. Since the compression ratio of a lossless
coder is rather limited, usually 2-3:1, the ability to scale a lossless
bitstream is very useful. The bitstream generated by the predictive
filter based lossless coder can not be scaled. A lossy/residue coder
can generate a bitstream with two layers, a lossy base layer and a
lossless enhancement layer. However, the scaling can not go be-
yond the lossy base layer. If further scaling in the lossless en-
hancement layer is required, it is necessary to match the design of
the residue coder with that of the lossy coder, which causes a lot
of complications.

In this work, a progressive to lossless embedded audio coder
(PLEAC) is proposed. PLEAC is based purely on a reversible
transform, which is designed to mimic the non-reversible trans-
form in a normal psychoacoustic audio coder as much as possible.
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Coupled with a high performance embedded entropy codec, this
empowers PLEAC with both lossless capability and fine granular
scalability. If fully decoded, the compressed bitstream produced
by PLEAC completely recovers the original audio waveform, and
achieves lossless compression. Yet, if higher compression ratio is
desired, the application may extract a subset of the compressed
bitstream and forms a higher compression ratio bitstream of lossy
nature. Such scaling can be performed in a very large bitrate
range, with granularity down to a single byte. With the progres-
sive to lossless functionality of PLEAC, the application can easily
balance between the amount of compression required and the
desired audio quality, from a fairly high compression ratio all the
way to lossless.

The rest of the paper is organized as follows. The framework of
the PLEAC encoder is outlined in Section 2. The reversible mul-
tiplexers and the reversible modulated lapped transform (MLT)
are examined in Section 3. The entropy coder and the bitstream
assembly module are discussed in Section 4. Experimental results
are shown in Section 5.

2. FRAMEWORK
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Figure 1 Framework

The encoder framework of the progressive to lossless embedded
audio coder (PLEAC) can be shown in Figure 1. The PLEAC
decoder is simply the reverse.

In PLEAC, the input audio waveform first goes through a re-
versible multiplexer (MUX). If the input audio is stereo, it is sepa-
rated into L+R and L-R components, where L and R represent the
waveform on the left and right audio channel, respectively. If the
input audio is mono, the MUX simply passes through the audio.
The waveform of each audio component is then transformed by a
reversible modulated lapped transform (MLT) with switching
windows. The window size can be either 2048 or 256 samples.
After the reversible MLT transform, we group the MLT coeffi-
cients of a number of consecutive windows into a timeslot. In the
current configuration, a timeslot consists of 16 long MLT win-
dows or 128 short windows. A timeslot therefore consists of
32,768 samples, which is about 0.74 second if the input audio is
sampled at 44.1kHz. The coefficients in the timeslot are then en-
tropy encoded by a highly efficient sub-bitplane entropy coder,
whose output bitstream can be truncated at any point later. Fi-
nally, a bitstream assemble module puts the bitstream of individ-
ual channels together, and forms the final compressed bitstream.

The framework of the PLEAC encoder is very similar to the
embedded audio coder(EAC)[7][8], which is a high performance
scalable lossy audio coder. In fact, we use the entropy coding
module of EAC for PLEAC. It is the reversible MUX and reversi-
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ble MLT modules that empower PLEAC to achieve the lossless
functionality, and the bitstream assemble module that ensures the
PLEAC compressed bitstream to be able to scaled from lossy to
lossless, with fine granular scalability. Our discussion in the fol-
lowing is hence focused on the reversible MUX/MLT and the
bitstream assemble module.

3. REVERSIBLE TRANSFORM

In this section, we discuss the reversible multiplexer (MUX)
and the reversible modulated lapped transform (MLT) module.
We notice (in Section 5) that the lossless compression efficiency
is affected by the similarity between the reversible MLT and its
non-reversible counter part. Therefore, we carefully design the
reversible MLT so that its transform result mimics the result of a
non-reversible MLT as much as possible.

3.1 Reversible multiplexer
Let x and y be the left and right channel, x” and y’ be the multi-
plexed channel L+R and L-R, a reversible multiplexer can be
implemented in lifting form as:
step0:y'=x—y | @))
stepl:x‘=x—|_y'/2J
where U denotes an integerize operation. The multiplexer (1)

produces integer input from integer output and can be exactly
reversed. Ignoring the nonlinearity in the integerize operation, the
relationship between the input/output pair can be formulated
through a linear transform as:

{x‘} B {1/2 1/2}[1 2)

Y L =1]y

The determinant of the transform (2) is -1, which means the vol-
ume of the input/output space is equal.

3.2 Reversible rotation
To build a reversible MLT, we first build a reversible rotation:
x| cosf —sinf | x|. 3)
L}‘} B Lin@ cosd }{y}
It is common knowledge that a rotation can be factored into lifting
steps through:

{cos@ —siné?} | cosf-1 { 1 0} | CosO-11 (g
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By using the integerize operation in each individual lifting step:

stepO:z=x+LcOyJ (5)

stepl:x'= y+|_clzJ ’

step2:y'=z+ |_cox‘J
where c¢;=(cosf-1)/sinf and c;=sinf are lifting parameters, the
rotation becomes reversible. Existing researches on reversible
DCT[5] and reversible MDCT[6] use the factorization in (4) as
the basic operation for the reversible transform. It yields a re-
versible transform with compact data representation. However,
with certain rotation angle, the quantization noise could be fairly
large, and may lead to poor signal representation.

One contribution of this work is to factor the rotation operation
with multiple forms. In addition to the factorization used in (4),
we use three additional factorization forms:

cos@ —sind 0 1]1 —sinf-1 1 011 —sing-1| (6)
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(3)

We notice that the core of the factorization is still the three step
lifting operation of (5). However, the pair of input/output vari-
ables may be swapped before (as in (7)) and after (as in (6)) the
lifting operation. The sign of the input/output may be changed as
well in certain cases. The additional forms of factorization lead to
different lifting parameters ¢, and ¢, for the same rotation angle 6,
and let the reversible transform to mimic that of a linear non-
reversible transform as closely as possible.

Let Ax’ and Ay’ be the quantization noise, which is the differ-
ence between the outcome of a reversible transform and that of a
linear non-reversible transform. Our goal is to develop a reversi-
ble transform that minimizes the average energy of the quantiza-
tion noise E[Ax'2]+ E[Ay'z]. We notice that it is the integerize

operation that introduces the quantization noise into the reversible
transform. The coefficient swapping and sign changing operations
in (6)-(8) do not introduce additional quantization noise. Let A be
the quantization noise of a single integerize operation:
LxJ =x+A> ©)

We may model the quantization noise in the reversible transform
as:

Ax' 3 oA+ A, (10)

Ay - (coc; + DA, + A +A,
where Ay-A, are the quantization noise at lifting steps 0-2. Let the
quantization noise at each step be independent and identically
distributed random variables, with E[4°] be the average energy of
the quantization noise of a single integerize operation. The aver-
age energy of the quantization noise can be calculated as:

Elax? |+ E|ay? |= {0+ ¢pe))? + 2 +¢7 +2fE[a2] (A1)
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Figure 2 Quantization noise versus rotation angle of different
factorization forms: the legends corresponding to the factorization
forms are: 0-(4), x-(6), +-(7) and 0-(8). The solid line is the quan-
tization noise by the combined factorization.

We plot the quantization noise versus rotation angles for differ-
ent factorization forms (4),(6)-(8) in Figure 2. We observe that
with any single factorization, the quantization noise can be large
at certain rotation angle. By switching among different factoriza-
tions, more specifically, by using factorization forms (4), (6), (7)
and (8) for rotation angles (-0.257,0.257), (-0.75%,-0.257),
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Figure 3 Four stages of the modulated lapped transform: (a) modulation, (b) pre-FFT rotation, (c¢) complex FFT, (d) post-FFT rotation.

(0.257,0.757) and (0.757,1.257), respectively, we may control the
quantization noise to be at most 3.2FE] [4°]. To achieve the smallest
possible quantization noise, we use the rounding towards the
nearest integer as the integerize operation. Compared with trunca-
tion towards zero, this leads to significantly smaller quantization
noise and better lossless compression performance, as shown in
Section 5.

3.3 Reversible modulated lapped transform.

A modulated lapped transform (MLT) can be factored into a
window modulation and a type IV DCT transform; the later of
which can be further factored into a pre-FFT rotation, a complex
FFT, and a post-FFT rotation operation. Using an 8-point MLT as
an example, the four stages of the MLT can be illustrated in
Figure 3(a)-(d), respectively. The modulation and pre-FFT rota-
tion consist of only rotation operation (3), which can be reversibly
implemented as in Section 3.1. The core of a fast complex FFT is

the butterfly calculation:
1 b
-1

{y,(i)}{l o 1 x, (i)

ye(N] [0 e™]1 x. ()
where x.(i) and y.(i) are complex numbers. The first matrix is a
complex rotation, which can be reversibly implemented according
to the last section. The second matrix is a complex multiplexer. In
this work, we implement it as a 0.25x rotation for both the real
and imaginary part of x.(i) and x.(j). Note that with 0.25x rotation,
there is a gain factor of 1/+/2, so the implemented reversible

butterfly is:
1
0

[yc(i)}_[ 0 172 —142] [x.0)
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In contrast to the butterfly (12) that has an absolute determinant of
2, the absolute determinant of butterfly (13) is 1, which does not
expand the data and is thus more suitable for lossless compression
purpose.

The core of the post-FFT rotation is the conjugate rotation op-
eration, which can be implemented by changing the sign of the

imaginary part after a normal rotation:
| cosf —sinf|x| |1 0 —sin@ | x| (14)
V' - v 1o -1 cos@ ||y
it can be reversibly implemented through Section 3.1 as well.

The reversible rotation has a determinant of 1, and the opera-
tions of swapping coefficients and changing sign have a determi-
nant of -1. The absolute determinant of the entire reversible MLT

(12)
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is thus 1. Because a determinant 1 transform preserves the signal
energy, the quantization noise of the reversible MLT is roughly
proportional to the number of rotations in the transform, which is
O(Nlog,N)E[4°] for an N-point MLT (note that there are two
rotations per butterfly in the complex FFT). Such implementation
is more favorable than factoring the reversible MLT (or type IV
DCT) through an N-point LU transform, where the quantization
noise that is caused by a long chain of lifting can be much larger.

4. ENTROPY CODING AND BITSTREAM
ASSEMBLY

After the reversible transform, the MLT coefficients of multiple
windows are grouped into a timeslot. The coefficients of each
timeslot are then entropy encoded by a sub-bitplane entropy coder,
which not only efficiently compresses the coefficients, but also
renders the output bitstream with the embedding property, so that
the bitstream of each channel can be truncated at any point. Our
entropy coder derives the psychoacoustic masking from the par-
tially coded coefficients during the embedded coding, hence the
psychoacoustic masking (or the quantization step such as the
scalefactor in MP3) need not to be sent to the decoder. Due to
space limitation, the details of the entropy coder are not elabo-
rated here. For the interested readers, we refer to [8].

PLEAC
HEADER
HEADER
HEADER

= =
o o
7 3
w w
= =
F F

Figure 4 The PLEAC bitstream syntax.

Finally, a bitstream assembler puts together the embedded bit-
stream of the L+R and L-R channels, and forms the final PLEAC
bitstream. The syntax of the PLEAC bitstream can be illustrated in
Figure 4. There is a global header, which is followed by a number
of timeslots. Each timeslot is again led by a header, which records
the length of the compressed bitstream in the L+R and L-R chan-
nels, and is followed by the actual embedded bitstream of the
channels. If exact waveform reconstruction is required, the entire
bitstream will be decoded. In case higher compression ratio is
called for, we extract a subset from the losslessly encoded bit-
stream to form a bitstream of higher compression ratio. Since this
is achieved by truncating the embedded bitstream of the L+R and
L-R channels of individual timeslot, the operation can be per-
formed very fast. It is also possible to convert the compressed
audio from stereo to mono by removing the compressed bitstream
associated with the L-R channel.
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5. EXPERIMENTAL RESULTS
To evaluate the performance of the progressive to lossless em-
bedded audio coder (PLEAC), we benchmark it against the latest
version of Monkey’s Audio[4], which is the best lossless audio
coders that the author is aware of. The test audio waveform is the
MPEG-4 sound quality assessment materials (SQAM)
downloaded from [9]. The original audio is in stereo and sampled
at 44.1kHz. To check various design components, we test the
lossless capability of PLEAC with a number of configurations:
a) PLEAC (described in the paper)
b) PLEAC with FFT butterfly implemented as (12)
c¢) PLEAC with factorization (4) only
d) PLEAC with truncation towards zero
The experimental results can be found in Table 1. For each clip,
we list the lossless compression ratio (the higher, the better) for
each tested algorithm/configuration. We notice that it pays to
maintain smaller quantization noise, i.e., the reversible transform
should mimic its non-reversible counterpart as closely as possible.
Compare to using only factorization (4) for reversible rotation
(configuration (c)) and using an integerize operation of truncation
towards zero(configuration (d)), the scheme adopted in the paper
improves the lossless compression performance by 48% and 5%,
respectively. The improvement is very impressive considering that
we have changed only a smaller component in the reversible
transform module. Another important design aspect is that the
absolute determinant of the reversible transform should be 1 (so
that the volume of the coefficient data does not expand). If a re-
versible transform is used with a determinant larger than 1, as
with butterfly (12) of configuration (b), there will be a degrada-
tion of lossless compression performance of 6%.
Table 1 Lossless compression ratio of different algorithms.
oder |Monkey’sPLEAC|PLEAC|PLEAC|PLEAC
Audio Audio3.97| (a) (b) (o) (d)
bass47 1 2.72 2.64 | 2.51 1.38 | 2.58
frer07 1 6.43 625 | 583 | 247 | 5.54
gspi35 1 4.07 437 | 4.13 1.59 | 4.06
gspi35 2 2.96 335 [ 3.15 1.40 | 3.19
harp40 1 2.21 2.62 | 2.51 1.56 | 2.56
horn23 2 3.99 3.88 | 3.69 | 140 | 3.71
quar48 1 2.33 229 | 220 | 130 | 2.25
sopr44 1 2.71 271 | 2.57 | 140 | 2.63
spfe49 1 3.08 2.77 | 2.55 1.80 | 2.62
spffs1 1 2.57 2.02 1.89 | 1.50 | 1.97
spfgs53 1 3.07 2.83 | 2.62 1.87 | 2.69
spme50 1 3.03 2.63 | 2.43 1.66 | 2.51
spmf52 1 3.02 230 | 2.13 1.63 | 2.21
spmg54 1 3.14 2.86 | 2.66 | 1.89 | 2.72
trpt21 2 3.40 3.56 | 341 143 | 3.42
viool0 2 2.76 2.84 | 2.73 1.48 | 2.80
Average 3.22 312 | 294 | 1.61 | 2.97
PLEAC shows itself as a decent performance lossless audio
coder, although it still trails behind the newest version of Mon-
key’s audio for about 3%. Since PLEAC is based purely on the
reversible transform, it differs from the lossy audio coder only by
its transform module. It is thus easier for PLEAC to co-exist with
an existing lossy audio coder. We notice that PLEAC outperforms
Monkey’s audio in certain instrumental music pieces, e.g.,
gspi35 1, gspi53_2 and harp40 1, while lags behind in speech
coding, e.g., spfe49 1, spff51 1 and spmf52 1.

Another major advantage of PLEAC is that its bitstream can be
scaled in a large bitrate range with granularity down to a single
byte. We further evaluate the lossy compression performance of
PLEAC. To measure the quality of the compressed audio, we use
the noise-mask-ratios (NMR)[10], which measures the level (in
dB) of audio coding noise above the just-noticeable-difference
(JND) threshold. The lower the NMR, the less that the coding
noise is audible; and thus the better the sound quality. Recogniz-
ing that NMR does not show every aspect of the audio defects, we
also put the coded audio clips on the web[7] so that the readers
may listen to the clips and evaluate themselves. Due to space limi-
tation, we only list the average NMR value of the test audio clips.
The average NMR of PLEAC with bitrate 256, 128 and 64kbps
are shown in Table 2. We also test PLEAC configuration (c), i.e.,
with only factorization (4) in the reversible rotation. MP3 and
Microsoft Windows Media Audio (WMA™) version 8.0 are used
as benchmark for lossy audio compression in Table 2. Again it
pays to design the reversible MLT as closely as possible to the
non-reversible MLT. With just a change in the implementation of
the reversible rotation, the lossy compression performance of
PLEAC improves dramatically. PLEAC outperforms MP3, though
it still lags behind the state-of-the-art WMA. With decent com-
pression performance in both lossless and lossy mode, lossless
capability, scalability with large bitrate range, fine granular scal-
ability down to a single byte, PLEAC shows itself as a promising
and versatile audio coder.

Table 2 Average NMR of PLEAC compressed audio.

oder PLEAC |PLEACIPLEACIPLEAC(c)] MP3 [ WMA
INMR 256kbps | 128k | 64k 128k 128k | 128k

Average(dB)] -5.26 | -0.40 | 3.23 9.63 8.15 | -2.95
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