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ABSTRACT

The problem of modeling a signal segment as a sum of exponen-
tially damped sinusoidal components is of interest in a wide range
of fields, including speech and audio processing. Often, model
parameters are estimated using subspace based techniques that ex-
ploit the so-called shift-invariance property. A drawback of these
estimation techniques in relation to speech and audio processing is
that the perceptual relevance of the model components is not taken
into account. In this paper we show how to combine well-known
subspace based estimation techniques with a recently developed
perceptual distortion measure, to obtain an algorithm for extract-
ing perceptually relevant model components. In analysis-synthesis
experiments with wideband audio signals, objective and subjective
evaluations show that the proposed algorithm improves perceived
signal quality considerable over traditional subspace based analy-
sis methods.

1. INTRODUCTION

Sinusoidal models have proven to provide accurate and flexible
representations of a large class of acoustic signals including audio
and speech signals. For speech and audio processing, sinusoidal
models have been applied in areas such as speech coding (e.g. [1]),
speech enhancement (e.g. [2]), music synthesis (e.g. [3]), and more
recently low bit-rate audio coding (e.g. [4]).

The applications above can be described in an analysis-modifi-
cation-synthesis framework, where in the analysis stage model pa-
rameters are estimated for consecutive signal frames; in this stage
it is typically assumed that each signal frame can be represented
well as a linear combination of constant-amplitude, constant-fre-
quency sinusoidal functions. In the modification phase, the esti-
mated parameters may be quantized or otherwise modified. Fi-
nally, in the synthesis stage, the resulting parameters are used for
reconstructing the possibly modified signal using interpolative or
overlap/add synthesis (e.g. [1]).

Recently, several extended sinusoidal model variants have been
proposed, which relax the constant-amplitude, constant-frequency
assumption (e.g. [4, 5]). An extended model of particular interest
is the so-called exponential sinusoidal model (ESM) which repre-
sents signal segments as sums of exponentially damped sinusoids.
Observing that damped oscillations occur commonly in many nat-
ural signals including speech and audio, the ESM is often a phys-
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ically reasonable model. The ESM has been applied to analysis-
synthesis of audio (e.g. [6]) as well as speech signals (e.g. [7, 8]).

In many speech and audio applications it is of interest to rep-
resent only the perceptually relevant time/frequency regions of the
signal in question by exploiting the masking properties of the hu-
man auditory system. By doing so, the signal can be represented
by a reduced parameter set which e.g. may be exploited for effi-
cient compression. The ESM parameter estimation schemes can
roughly be divided into two main groups: analysis-by-synthesis
schemes such as matching pursuit (MP) based algorithms (e.g.
[9, 5]) and subspace-based schemes (e.g. [10, 11, 12]). While some
work has been done for extracting perceptually relevant sinusoids
using MP based schemes (e.g. [13]), less effort has been directed
towards perceptual subspace based techniques.

In [14] an attempt is made to combine psycho-acoustical infor-
mation with a subspace based ESM parameter estimation scheme.
The signal to be modeled is divided into subbands and an inde-
pendent (low-order) ESM is used for each subband. The ESM
components are estimated in an iterative manner, one at a time, by
assigning in each iteration an additional damped sinusoid to the
subband having the largest residual error-noise to masking level,
in much the same way as the bits are assigned to different sub-
bands in MPEG-AUDIO [15]. The approach in [14] operates at
a lower computational complexity than a corresponding full-band
scheme, but is sub-optimal because subbands are treated indepen-
dently. Furthermore, no perceptual knowledge is used for estimat-
ing the sinusoids within each subband.

In this paper we propose an algorithm which aims at minimiz-
ing a perceptually motivated distortion measure. In addition, it
allows for joint estimation of perceptually relevant ESM param-
eters. The presented algorithm combines well-known subspace
based estimation algorithms and a distortion measure derived from
a recently developed psycho-acoustical masking model.

2. THE PERCEPTUAL DISTORTION MEASURE

To account for human auditory perception, we use the percep-
tual distortion measure described in [16]. The underlying psycho-
acoustical model differs from existing spreading-function based
models in the sense that it takes into account all auditory filters for
computing the distortion, rather than considering the auditory fil-
ter receiving most of the distortion. The distortion measure � can
be written as [13]:

� �

� �

�

������� ������������ (1)
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where�indicates the Fourier transform operation, �� is a weighting
function representing the frequency-dependent sensitivity of the
human auditory system, � is the analysis window, and � � � �
�� is the modeling error, i.e., the difference between the original
signal � and the modeled signal ��. The weighting function �� is
usually chosen to be the reciprocal of the masking threshold. In
this work we use the masking threshold derived from the psycho-
acoustical model in [16], but other models can be used, e.g. the one
from MPEG-Audio [15]. In order for Eq. (1) to define a norm, the
weighting function ��must be positive and real for all � � ��� 	� so
that the distortion � in Eq. (1) can be rewritten as the convolution
of two (infinite) discrete-time sequences:

� �
�
�

��	 � ����
��� � �	 � ������ (2)

where 	 is the inverse Fourier transform of
�
��.

In the context of the ESM, the modeled signal frame �� �
����� � � � � �����


� is given by

��� �
�
�

�� ��
����
� ������
� 
��� (3)

for 
 � �� � � � � � � 	, where ��, ��, ��, and 
� are amplitude,
damping, (normalized) angular frequency, and phase parameters,
respectively. The problem is for a given original signal frame �
to find the set of ESM parameters which minimizes the perceptual
distortion measure � in Eq. (2). Since a convolution operation
can be formulated in terms of a matrix-vector multiplication, the
minimization problem of interest can be stated as:

���
���������	�

��� ��� ������ ��� ��� 
������� (4)

where� � ������� is a diagonal matrix containing the elements
of the analysis window �, and� is a Toeplitz filtering matrix con-
taining the elements of the, in this case symmetric, filter impulse
response 	. The effect of premultiplication with �� may be in-
terpreted as a transformation from the linear domain where the
��-norm does not necessarily correlate well with subjective quality
to a perceptual domain where the ��-norm is in better accordance
with perceived quality. In principle, Eqs. (2) and (4) deal with sig-
nal sequences of infinite length. In practice, however, the ESM
parameters must be estimated from finite sample sequences.

3. ESTIMATION OF PERCEPTUAL ESM PARAMETERS

The algorithms to be presented rely on the observation that the
modeled segment �� in Eq. (3) can be expressed as a sum of com-
plex exponentials:

��� �


�
���

���
�
� � 
 � �� � � � � � � 	� (5)

where �� � �� ��
��
�� are complex amplitude parameters and
�� � ��
����
� ���� are so-called signal poles. From Eq. (5)
we see that the signal poles �� contribute non-linearly to the ob-
jective function in Eq. (4). This non-linearity can be circumvented
by using the so-called HTLS algorithm [11], which is a total least
squares (TLS) based variant of Kung et al’s original state space al-
gorithm [10]. These algorithms belong to the class of single shift-
invariant methods within the set of subspace-based signal analysis

algorithms [12]. The HTLS algorithm is not immediately suited
for solving the weighted problem in Eq. (4). Instead, to take the
filtering effect of the matrix� in Eq. (4) into account, we consider
the so-called prefiltered HTLS algorithm [17]. In the following
we give a brief review of the HTLS algorithm and the prefiltered
HTLS algorithm; for an in-depth treatment of the algorithms, we
refer to [11] and [17], respectively.

3.1. Signal Poles with HTLS

Let us initially assume that the observed signal frame � can be
represented by the ESM in Eq. (5) without error, and that the cor-
rect model order � is known. The HTLS algorithm [11] first ar-
ranges the observed signal frame � in a Hankel data matrix � �
�
��� � ��� � � whose first column is ��� � � �����
� and

whose last row is ����� � � ��� 
.
The singular value decomposition (SVD) of � is given by:

� �
�
����

� ��� �
� �

� �
� �
�

� �
�
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�
�
�����

�
�

�
�

where �� is a diagonal matrix containing the� non-zero singular
values, and the matrices �� and �� contain as columns the� cor-
responding left and right singular vectors, respectively. Finally, the
shift-invariance property of �� (and ��) ensures that the following
matrix equations are satisfied:

����
�
� � ��� � � �� �

��� � � �� � (6)

where the superscripts � (	) denote deletion of the top (bottom)
row of the matrix in question. The signal poles are found as the
eigenvalues of the � 
� matrix ��
� (or ����). If the observed
signal satisfies Eq. (5) and� is known, the underlying signal poles
can be recovered without error.

In practice, however, � does not satisfy the ESM exactly, the
matrix � will typically have a rank larger than �, and the shift
invariance property in Eq. (6) will only be approximately valid.
In this case, the matrix �� contains the left singular vectors cor-
responding to the � largest singular values of � , and the matrix
��
� (or����) is estimated as the TLS solution of the incompatible
matrix equation in Eq. (6).

3.2. Signal Poles with Prefiltered HTLS

In the prefiltered HTLS algorithm [17], the Hankel data matrix �
is postmultiplied with a full rank filter matrix � � �

��� and
the HTLS algorithm is applied to the matrix product �� � �� ; a
similar description can be derived when � is premultiplied with a
filter matrix � �

��� [17]. It is straight-forward to show that �� ,
which generally is not Hankel structured, retains the rank-� and
shift-invariant property. That is, when the observed signal frame
satisfies Eq. (5) and� is known, we have:

���� ���
� � ���� � �� �� ����� � �� �� � (7)

where ��� � �
��
 contains the left singular vectors correspond-

ing to the� non-zero singular values of the filtered matrix �� , and
the signal poles ��� can be recovered without error as the eigenval-
ues of ���
�; in this ideal scenario, the only requirement is that the
filter matrix � � �

��� has full rank.
The purpose of the filter matrix � is to implement the con-

volution in Eq. (2). Since, in practice, the sequences in Eq. (2)
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have finite length, the convolution is circular; hence, we use a cir-
cular Toeplitz filter matrix � whose first column and first row is
�	� � � �	� � � � � � 	� � � �	���
� and �	� � � �	� � � � � � 	� � � �	���
,
respectively, with ! � � ���

�
�; experiments showed that this filter

matrix structure leads to better performance than e.g. the Toeplitz
structured filter matrix proposed in [17]. Forming the product
�� � �� corresponds to convolving circularly each row in �

with the FIR filter impulse response 	 � �	� � � �	�
� .

3.3. Estimation of Complex Amplitudes

Having estimated the signal poles with the prefiltered HTLS al-
gorithm, the complex amplitudes �� � �� ��
��
�� (and thus
real amplitudes �� and phases 
�) are found as the solution to the
weighted linear least squares problem

�� � ������
�
��� ��� � ������ (8)

where � � ��� � � � �
 
� is the complex amplitude vector, � is
an � 
� Toeplitz filtering matrix whose first column and row
is �	� � � �	� � � � � �
� and �	� � � �	� � � � � �
, respectively, � �
������� is an � 
 � diagonal matrix with the elements of the
analysis window � on the main diagonal, and � � �

��
 is a
Vandermonde matrix constructed from the signal pole estimates
���. The �th column of � is of the form �	 ��� ��

�
� � � � ������ 
� .

3.4. Algorithm Outline

The proposed scheme for estimating perceptually relevant ESM
parameters, denoted by ‘P-ESM’, can be outlined as follows.

Input: �,�.
Output: ���, ���

1. Compute perceptual weighting filter 	 from a psycho-
acoustical masking model (eg. [16]), and construct filter
matrices � and � .

2. Construct Hankel structured data matrix� .

3. Compute prefiltered data matrix �� � �� .

4. Find perceptual signal pole estimates using the HTLS
algorithm [11]: ��� � �"�#� ���.

5. Construct the Vandermonde matrix � from ���, and es-
timate complex amplitude vector from weighted linear
least squares problem: �� � ������

�
��� ��� � ����� .

4. SIMULATION RESULTS

A number of simulation experiments was conducted to study and
evaluate the performance of the proposed algorithm; objective as
well as subjective tests were performed. Seven different audio sig-
nals, sampled at a frequency of 44.1 kHz, were used in the experi-
ments, see Appendix A. A fixed frame length of � � 	��� sam-
ples (23.2 ms) was used, and in case of analysis-synthesis of entire
signals, frames were extracted with an overlap of 50%. Typically,
the filter impulse response 	 had a length of $ � ��� samples (5.8
ms). A fixed model order of � � �� was used for all frames, and
the window � was a Hanning window.
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Fig. 1. Average modeling performance across 7 test signals as a
function of dimension of data matrix �� � �

��� for a fixed frame
length of � � 	��� samples (� � ��� � 	).

To have an objective quality measure, we define the following
‘perceptual’ signal-to-noise ratio (PSNR) for the original signal
frame � and its modeled counterpart ��:

%#�& � 	� �����

� �������
��� ��� ������

�
[dB]�

where the Toeplitz matrix� and the diagonal matrix� are identi-
cal to the ones used in Eq. (8). The PSNR measure aims at reflect-
ing the quality of the modeled frame �� in the perceptual domain,
and is valid to the extent that the perceptual model used for con-
structing � adequately represents the masking properties of the
human auditory system. To measure the quality of an entire signal,
we use the segmental PSNR defined as the average PSNR value,
taken across the signal frames in question.

We compare the proposed parameter estimation scheme, P-
ESM, to the standard non-perceptual algorithm (� � '�� � ').
We denote this latter scheme ��-ESM, where ’��’ reflects that pro-
cessing is done to minimize an unweighted ��-norm (as opposed
to a perceptually weighted ��-norm).

4.1. Performance vs. Matrix Dimensions

In [18] is was argued that data matrices should be constructed ‘as
square as possible’ for optimum performance with the standard
HTLS algorithm. In this section we show by simulation that these
settings are not optimal for the P-ESM scheme.

The signals in Appendix A were modeled with P-ESM and
��-ESM using data matrices �� � �

��� whose number of rows
was varied in the range � � ��� � � � �  ��. Using a constant frame
length resulted in taller and narrower data matrices for increasing
values of �. Fig. 1 shows the modeling performance in terms of
PSNR as a function of �(� . The performance curve for ��-ESM
has a broad optimum for �(� values in the range 	(!� �(!. For
P-ESM, the optimum is narrower and centered at �(� 
 	(!.

The objective results in Fig. 1 are supported by informal listen-
ing tests. For ��-ESM, signals generated with 	(� ) �(� ) !(�
are perceptually identical to the reference signal generated with
�(� � 	(�; for �(� � 	(� and �(� � !(� a degradation
is noticeable. Similarly, the P-ESM results in Fig. 1 are well in
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line with perceived quality. While the quality at the reference set-
ting �(� 
 	(� is good and certainly superior to the ��-ESM
signals, P-ESM quality is even better at �(� 
 	(!. Further-
more, since the computational complexity of P-ESM is roughly
������������, the optimum at �(� 
 	(! implies a reduction
in computations compared to the standard setting �(� 
 	(�.

4.2. Listening Test with Audio Signals

To determine the subjective advantages of the proposed scheme,
the seven signals listed in Appendix A were modeled with P-ESM
and ��-ESM and compared in a listening test. Ten listeners partic-
ipated in the test. Signals were presented to the listeners as triplets
OAB or OBA, where O was the original signal, A was the signal
modeled with ��-ESM and B was the signal modeled with P-ESM.
The order (OAB or OBA) in which signals were presented was
selected randomly for each presentation. The task of the listener
was to decide, which signal (A or B) was perceptually closest to
the original O. Each signal triplet was presented a total of 5 times
during the test. The preference for P-ESM averaged across the ten
listeners is shown in Table 1. Clearly, the P-ESM method performs
better than the ��-ESM method for all test signals.

Signal No. 1 2 3 4 5 6 7
Preference [%] 78 92 80 80 94 86 64

Table 1. Subjective preference for P-ESM over ��-ESM.

5. CONCLUSION

We proposed a method for estimating perceptually relevant sinu-
soids for audio signal modeling. The method combines well-known
subspace based estimation schemes with a recently developed per-
ceptual distortion measure. In analysis-synthesis experiments with
wideband audio signals, objective as well as subjective evaluations
show that the proposed method leads to modeled signals of higher
quality than standard subspace based estimation schemes.

Appendix A.

The audio signals used for evaluating the proposed parameter esti-
mation scheme are outlined below.

Signal No. Signal Name Duration [s]

1 Abba 10.02
2 Trumpet 10.45
3 English female voice 6.84
4 Metallica 10.14
5 Contemporary pop music 10.05
6 Suzanne Vega 10.27
7 Carl Orff 10.90
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