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ABSTRACT

We present a soft—partitioned frequency—-domain adaptive fil-
ter (SPFDAF) and compare it in the context of other LMS type
acoustic echo cancelers. The SPFDAF uses a non-rectangular
window to partition the model taps (impulse response) of an echo
canceler. Our soft window can be approximated very efficiently
in the DFT domain and still attenuates aliasing components of the
DFT by 40 dB. This technique results in a very low computational
complexity and maintains an excellent signal quality.

1. INTRODUCTION

We consider the family of LMS type algorithms in the applica-
tion of acoustic echo cancellation. This class of adaptive filters is
often represented by the normalized least mean-square algorithm
(NLMS) and the frequency—domain adaptive filter (FDAF) [1].
The partitioned block frequency—domain adaptive filter (PBFDAF)
[2] can be seen as a solution in—between NLMS and FDAF.

A rectangular sectioning, like in the PBFDAF, is however not
the only possible way to partition the model taps of an echo can-
celer. The question arises which is the optimum window func-
tion for a partitioned block frequency—domain adaptive filter. We
will demonstrate that an overlapped soft—partitioning of the un-
known system at least introduces some benefits compared to non—
overlapped rectangular partitioning. The approach will be re-
ferred to as the soft—partitioned frequency—domain adaptive filter
(SPFDAF). In contrast to [3], we choose a cosine window function
which better eliminates aliasing components produced by the DFT
and hence delivers a better signal quality.

In order to compare the performances of NLMS, FDAF,
PBFDAF, and SPFDAF to each other we define the following qual-
ity attributes for acoustic echo cancelers:

e Computational Complexity. This will be compared for a

given signal delay. We assume that an algorithmic delay of
a few milliseconds is acceptable in most applications.

e Convergence Speed. The rate of convergence will be com-
pared for a given accuracy in the steady state.

e Signal Quality. This attribute addresses the degree of nat-
uralness of the output signal, e.g. the presence of block ar-
tifacts.

Figure 1 introduces basic denotation to be used. The local

microphone signal at the sampling time index ¢

y(i) = s(é) + n(3) + d(3) @
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is additively composed of clean near speech s(i), local background
noise n(z), and acoustic echo d(z), respectively. The linear echo
canceler W produces an estimate E(z’) of the acoustic echo, given
the received speech signal (7). The error signal e(%) is transmitted
to the far speaker.

n(7)
N y(2) to the far speaker
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Fig. 1. Acoustic echo cancellation in a hands-free scenario.

Our paper is organized as follows: Section 2 recalls the
frequency—domain adaptive filter (FDAF) and the partitioned
block concept based on a rectangular window (PBFDAF). In
Section 3, the soft—partitioned frequency—domain adaptive filter
(SPFDAF) will be developed in two steps from the PBFDAF: mod-
ification and approximation. In Sections 4 and 5, the SPFDAF will
be compared to other LMS type adaptive filters in terms of com-
putational complexity and convergence properties.

2. FREQUENCY-DOMAIN ADAPTIVE FILTERING

We summarize the FDAF and the PBFDAF for an effective length
N of the echo canceler.
2.1. The FDAF Principle

The frequency—domain adaptive filter (FDAF) [1, 4] uses a DFT
length of M = 2N. The DFT spectrum E (2, kR) at frame index

k € Z and frequency index 2y = 2n¢/M, ¢ =0,1,...,M—1,is
obtained from the windowed time domain signal €(<)
E(4,kR) = DFT{e(i)} 3]

= DFT{e(kR— M + R +i)w.(i)}
= 2—: e(kR — M + R+ iyw.(i)e”’ '

=0
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with frame shift R < M/2 = N. The rectangular window func-
tion applied to the signal e(z) is defined as

(i) = 1 forM/2<i<M-—1
Wel’ =91 0 otherwise .

®)

The same notation as in (2) holds for the DFT coefficients
X (S, kR) corresponding to the input signal x(z) if we construct
Z(i) with an extended window function

(i) = 1 foro<i<M-—1
W=t) =3 0 otherwise .

(4)

Ilustrated in Figure 2, the constrained FDAF updates the
frequency—domain adaptive weights W (Q,, kR) according to

W (%, (k+1)R) = W (2, kR) -
o e G )

using the projection (i.e. constraining) window

(i) = 1 for0<i<M/2-1
%=1 0 otherwise

(6)

and the DFT spectrum E(Q,, kR) corresponding to the error sig-
nal (M/2<i< M-1)

e(kR—M+R+1i)=y(kR— M+ R+1)
— IDFT{X(Q, kR)W (Q, kR)} . (7)

In (5), the normalization power spectral density (PSD)
®xx(Q, kR) is usually approximated by first order recursive
smoothing of | X (€, kR)|? and 1 denotes the non-negative step-
size.

The frame shift R < N controls the exchange between signal
delay and computational complexity. Conflicting demands with
respect to delay and complexity are reduced in the PBFDAF.

2.2. The PBFDAF

N model taps of the echo canceler are uniformly divided into L =
2N/M npartitions of length M /2 and still M is the DFT length.
The signal delay of the PBFDAF is equal to the frame shift which
issetto R = M /2 forany N.

The adaptive weights corresponding to partition A,

W (Q, kR) ,
are individually updated in the style of Equation (5)

0<ALL-1, (8)

W, (k+1)R) = W™ (Q, kR) ©)
*(X)
. o) XNV (Q, kR)E(Q, kR)
+DFT{q(z) IDFT{ 4 B KB }}
given delayed versions of the excitation spectrum
XV (Q, kR) = X (Q, (k — MR) (10)

and E(S,kR) corresponding to the compound error signal
(M/2<i<M-1)

e(kR— R+1) =y(kR— R +1)

L—1
- IDFT{ 3 XN, kRW M (9, kR)} RNGE))
A=0

< ()"l DFT |=—

R S
®xx(Q, kR)

(i) |
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Fig. 2. Adaptation loop of the FDAF according to Equation (5).
The signal flow comprises correlation, normalization, constraining
(projection), and the actual update.

The computational complexity of the PBFDAF is mainly given
by the projection (compare Figure 2) required in each partition .
That motivates the optimization of this module and results in the
SPFDAF.

3. THE SOFT-PARTITIONED FREQUENCY-DOMAIN
ADAPTIVE FILTER

In the PBFDAF, each set of coefficients W) (€2, kR), 0 < A <
L — 1, corresponds to a unique rectangular section of model taps.
The reason is the rectangular window function g(z) as defined in
(6). This constraint will be relaxed in the SPFDAF by the modified
window function gsos(¢) to be used instead of g(z).

3.1. Cosine Projection Window

We propose a non—rectangular projection window gso;(¢), for ex-
ample

~_ J 0.5(1—cos(2mi/M)) for0 <i< M/2—1
Gsofe (1) _{ 0 otherwise ,

(12)
which completely eliminates time—-domain aliasing produced by
the cyclic correlation with the DFT. The non-zero extent of the
cosine window in (12) is thus limited and aligned to the support
region of the previous rectangular window. For a DFT length of
M = 256 both windows are compared to each other in Figure 3.

In order to provide a uniform support of the models taps of the
echo canceler, the projection window gsos (¢) must be overlapped
with 50% as shown in Figure 4. That results in Lgosy = 2L =
4N /M npartitions to realize an echo canceler with IV discrete FIR
taps.
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Fig. 3. Our cosine projection window gsos(7) for M = 256.
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Fig. 4. Overlapping cosine projection windows and total region of
support of the echo canceler (bold) with the SPFDAF. M = 256
and Lgofy = 5.

3.2. Cyclic Projection Filter

The replacement of g(¢) with gsof; (¢) encourages the translation
of the projection in Figure 2 into a cyclic convolution in the DFT
domain. The changes can be observed from the new system in
Figure 5.

The advantage of this procedure becomes obvious if we con-
sider the DFT coefficients of our soft window Qsof:(£2¢)
DFT{qgsor:(2)} illustrated by Figure 6. Apparently, the cyclic
convolution of AW (¢, kR) and Qsof:(€2¢) can be approximated
very efficiently with a small number of coefficients.

An example approximation @soft(Q[) =~ Qsoft(£2¢) Which
still provides 40 dB attenuation of aliasing components is given
by the following coefficients obtained by truncation of the exact
coefficients (M = 256):

64 fort =0
—7-54.3249 foré=1

- —32 for{ =2

Qsor () =\ . 108650 fort=3 13)
0 foré =4,5,...,%+1

Q¥ +(Qr_¢) otherwise

The approximation in (13) is the basis for any further evalua-
tion of the SPFDAF in this paper.
3.3. SPFDAF Algorithm

The SPFDAF algorithm is summarized as follows: The adaptive
weights corresponding to partition A

WM (Qe,kR), 0< A< Lo — 1, (14)

DFT
AW (24, kR) (i)
~<— ()" DFT o
M —_—
Dxx( Qz,kR)
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Fig. 5. Adaptation loop of the SPFDAF (partition index A omitted)
with an efficient filter—realization of the soft window gsoss ().
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Fig. 6. DFT coefficients of the cosine projection window gsos ()
for M =256and £ =0,1,..., M/8.

are updated in the same way as in Equation (9), given the delayed
versions of the excitation spectrum

XN (@, kR) = X(Q0, (k= DIR) . (19
The projection window gsof; (%) is used instead of ¢(z) and is ap-
proximated as a short filter @Soft (€2) in the DFT domain, compare
Figure 5. The DFT coefficients E (€2, kR) correspond to the com-
pound error signal obtained from Equation (11) where the number
of partitions L must be replaced with Lgos, = 4N/M. In this way,
the SPFDAF has the same number of model taps IV and yields the
same algorithmic delay of R samples as the FDAF or PBFDAF.
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4. COMPUTATIONAL COMPLEXITY

We compare the computational complexity of the LMS type algo-
rithms NLMS, FDAF, PBFDAF, and SPFDAF, given the number
of model taps IV of the echo canceler.

The complexity is measured in terms of operations per out-
put sample. A single operation shall be a real-valued multi-
ply/accumulate instruction which is typically performed within
one cycle on a digital signal processor. We further assume that a
division can also be accomplished within one operation, possibly
at the cost of reduced accuracy. According to [5], we fix the num-
ber of operations required for an FFT of length M to 3M log M,
although the FFT complexity is still dependent on the processor.

The results of this study are plotted in Figure 7, where we
assumed a DFT length of M = 2R = 256 for the partitioned
block approaches (PBFDAF, SPFDAF) and a frame shift of R =
128 for the FDAF. That yields an equal algorithmic delay (except
for the NLMS which has zero delay). The FDAF is considered in
an “efficient” unconstrained realization.

10001 NLmis N i
‘‘‘‘‘ FDAF, efficient |~ 7

800| - - - PBFDAF 1
— SPFDAF o o

600

400

200

operations per output sample

200 400 600 800 1000
echo canceler length N

Fig. 7. Multiply/accumulate operations per output sample for dif-
ferent adaptive filters with an equal frame shift (delay) of R = 128
samples (except NLMS with zero delay).

5. CONVERGENCE PROPERTIES

By simulation we investigate the rate of convergence of different
adaptive filters: NLMS (with short decorrelation filters), FDAF,
PBFDAF, and SPFDAF. The rate of convergence is evaluated in
terms of Echo Return Loss Enhancement (ERLE) over time. The
results are presented in Figure 8.

The acoustic echo was produced artificially by means of a
measured (but fixed) car impulse response of 512 taps at 8kHz. For
Figure 8 we used a stationary but correlated excitation signal z(z)
with "formants” and harmonic fine structure ("pitch”). The PSD
of the speech-like test signal is plotted in Figure 9. The acous-
tic echo at the local microphone was mixed with car background
noise such that the global echo-to—noise ratio evaluates to 10 dB.
Simulations with real speech have been consistent with Figure 8.

The length of the echo canceler was chosen as N = 512
and the algorithmic delay was set to R = 128 samples in ev-
ery algorithm (except the NLMS which has zero delay). For the
PBFDAF that means L = 4 partitions whereas the SPFDAF uses
Lqost = 2L = 8 overlapping sections of coefficients.
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sampling time index /1000

Fig. 8. Rate of convergence for different adaptive filters with
N = 512 and frame shift R = 128 corresponding to Figure 7.
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Fig. 9. PSD of the correlated (speech-like) excitation signal x(3).

6. CONCLUSION

We have introduced a soft—partitioned frequency—domain adaptive
filter (SPFDAF). This technique is of interest in applications rely-
ing on very high order adaptive filters. In a comparison of LMS
type approaches, the SPFDAF converges faster than the PBFDAF
and at the same time consumes less processing power.

The SPFDAF applies a soft projection window to section the
model taps of an echo canceler. In contrast to [3], the limited extent
of our window function does not support the aliasing components
produced by the DFT. This is essential for a high signal quality.
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