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ABSTRACT

The miniaturization of GSM handsets creates nonlinear acous-
tical echoes between microphones and |oudspeakers when
the signal leve is high (hands-free communication). Sev-
eral methodsincluding nonlinear cascadefilters and a bilin-
ear filter are proposed to compensate these echoes. A bi-
linear filter isarestricted NARMAX (Nonlinear Autoreges-
sive Moving Average with eXogenousinputs) filter. We will
present an evaluation based on the standard ERLE (echo re-
turn loss enhancement) measure, between a smple linear
adaptive FIR filter and various nonlinear filters. These ex-
periments are carried out first on a simulated communica-
tion system, then on experimental signals.

1. INTRODUCTION

Nowadays hands-free telephones employ a linear adaptive
filter in order to compensate acoustic echoes (echo canceller
diagram, figure 1). Moreover, competitive audio consumer
products require not only cheap signal processing hardware
but also low-cost analog equipment and sound transduc-
ers. The nonlinear distortions produced by these electro-
acoustic transmission systems can’'t be described and an-
alyzed by standard methods based on linear system the-
ory alone [1], [2],[3]. The commonly used linear acous-
tic echo canceller (AEC) can't compensate these kind of
echoes. Therefore the far-end user may hear an annoying
distorted echo of high volume speech portions, while echo
of low volume portions is removed by the linear canceller
(Adaptive FIR filter)[4].

Some methods have been studied for nonlinear echo can-
cellation. Volterra series based filters [5]. Thisfilter method
can represent a large class of nonlinear systems but implies
a high computational complexity (section 3). Neura net-
works [6]; this cascade structure offer anew perspective but
need an extra reference microphone [4]. NARMAX struc-
ture method; thisis a general parametric model but need a
pre-identification procedure[7].

More recently, cascade filter structures have been pro-
posed[2],[4]. In[2] anon polynomia Wiener-Hammerstein
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model is presented with a saturation nonlinear memoryless
function. This kind of function can’t modeled a large class
of nonlinearities. In [4] apolynomia hammerstein structure
is proposed.

In section 2 cascade structures are proposed and de-
scribed. Comments and limitations of these models are dis-
cussed in section 3. Results of echo cancellation on simu-
lated and experimental signals are summarized in table 2 of

section 5.
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Fig. 1. Echo canceller diagram.

2. STRUCTURE OF FILTERS

Let y, and z, be respectively the observed output and input
samples at k time.

2.1. FIRfilter
Theinput/ouptut relationship is defined as follow :

Me—1

Yk = Z hizg—i, D
i=0

where m, is the memory length of the filter. This linear
filter is commonly used to compensate acoustic echoes.
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2.2. Nonlinear structures
2.2.1. Volterra model

Thediscrete-timeinvariant Volterrafilter with memory length
m, and order of nonlinearity D, with L samples, is defined

by :

me—1

D
Yr = Z Z eél,--- gn Th—j1 " " Thk—j; )

i=1 j1,,5i=0

The Volterrafilter is attractive because it’'s a straightforward
generalization of the linear system description and the be-
haviour of many physical systems can be described with a
Volterrafilter [8].

2.2.2. Bilinear model

The Bilinear model is a parametric model, which contains
cross terms [9]; it corresponds to a subclass of the NAR-
MAX (Nonlinear Autoregessive Moving Average with ex-
ogenous inputs) structure[7]:

Mg —1 my1 Mga—1My2
Yr = Z QiTg—; + Z Biyk—j + Z Z%‘jmk—iyk—j
i=0 j=1 i=0 j=1
©)
The inclusion of information from both lagged inputs
and outputs provides a very concise representation for non-
linear systems
2.3. Nonlinear cascade structures
The main advantage of these structuresis to introduce less
parametersto be estimated.
2.3.1. Hammerstein model

It's a cascade of a memoryless polynomial filter and a FIR
filter.

D
ur = Zaixi

-
Yp = Z hiug (4)

2.3.2. Wener model

It's a cascade of a FIR filter and a memoryless polynomial
filter.

mye—1

D
uy = Z hizg—i yyr = Zaiui )
i=0 i=1

2.3.3. Wener—Hammerstein model

It's acascade of aFIR filter, amemoryless polynomial filter
and a FIR filter.

Mg —1 D
1 2 1\i
up = E hizp—i,up, = E a;(ug)
i=0 i—1
Mmao—1
2
Y = E hiwg_; (6)
i=0

3. COMMENTSAND LIMITATIONS

3.1. Volterravsnonlinear cascade structures

Letyy, y)¥ andy! be respectively the output sequence of
the Volterra, Wiener and Hammerstein models. Let's take
D=2andm, =2:

ye = B0k +01zro1 + 00z + Oizio1 + 051 ziean—s (7)

yoo= arhowk + arhize—1 + ashoxy + ashizi_y + ...
azhoh1TETr—1 ®

Y = a1:h0$k +arhixr—1 + azhoa?i + O/Zhli'i—l 9)

This basic exampleindicatesthat :

e The Volterra and Wiener models contain more terms
than the Hammerstein model z .z, (al the cross
terms are included).

e The number of parameters of the Volterra model is
bigger than the Wiener and Hammerstein model (see
table 1).

¢ In both the Wiener and Hammerstein models, fewer
parameters are needed. A constraint is that the pa-
rameters of all terms are dependent (a1 ho for the zy,
term). This can leads to estimation errors.

¢ Notethat the parameters of the Wiener—Hammerstein
model are also dependent.

e All these cascade filter methods can be consider as a
particular subclass of a Volterra seriesfilter.
3.2. Number of parameters

The number of parameters to be estimated is crucial for the
computational complexity and convergence of the filter al-
gorithms. The number of parametersis evaluated for :

e EXAMPLEL: D =3, m, = 10, my1 = mys = 10
andmyl = Oandmy2 =1.

e EXAMPLE2:D = 3, m,; = 20, mgy1 = mgs = 20
andmyl = Oandmyg =1.
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Model Nb of parameters Ex1 | Ex2
FIR My 10 20
Volterra (D +mg)!/(D'my!) —1 | 285 | 1770
Hammerstein me + D 13 23
Wiener me + D 13 23
Wiener-Hammerstein | my1 + mg2 + D 23 43
Bilinear Myl + Myl + Mz2My2 20 40

Table 1. Number of parameters.

Results are reported in table 1.

Thenumber of parameters of the Volterramodel quickly
increaseswith D and m . Asaconseguence, large data sets
are required in order to obtain an estimation of the model
parameters with reasonable accuracy. For these reasons, we
won't consider the Volterramodel in the experiments of sec-
tion 5.

Asdescribed in section 3.1 both cascadefilters and Volterra

filter can model nonlinear polynomia systems. However,
for the cascade filters, if the amount of parameters needed
is small, they are dependent from each other (a, h). More-
over, the polynomial order D islimited and fixedat D = 3

[6].
4. ADAPTATION ALGORITHMS

The parameters (excepted the a; parameters of the cascade
models) are updated using a stochastic gradient algorithm
(NLMS) minimizing the expected value of the squared er-
ror signal ey, (with e, = dj, — dj,). The parameters of the
polynomial filters are updated with a RL S algorithm, which
allows a control of the adaptation speed which is an impor-
tant issue in AEC [4]. Moreover, a priori and a posteri-
ori errors are used for the convergence computation of the
parameters. This leads to improve the quality of the echo
cancellation process (see algorithm described in [4]).

5. EXPERIMENTS

5.1. Simulation results

Traditionally the nonlinear communication channel is mod-
eled by saturation followed by a linear propagation. This
representation does not take into account the nonlinear me-
chanical vibrations.

A commonly used function for modeling saturation is a
sigmoid function (figure4 for o = 1, 2 and 5) well knownin
the neural networks community [10] and defined asfollow :

2
1+ exp(—au)

pu) = ( -1)B. (10)

Thelinear systemischosenas H(z) = ;——, With 1, =
0.2. The input sequence {z,} isi.i.d. M( ,1). For the

« |Incfeasing slope parameter a

Fig. 2. Sigmoid function.

single talk context, the results are presented in terms of the
Echo Return Loss Enhancement (ERLE), define by :

t

dtd
ERLE,5 = 10log [

ete

(single talk context),

and for the double talk context, we use the inverse of the
normalized mean-squared error defined by :

(e~ ) (e—n)

whered, e, n are respectively the observed, transmitted end
local speech sequences (see figure 1). The polynomial or-
der, and the memory length m , arefixed: D = 3, m, =
10, m41 = 10. Results are obtained with 1, = 3,mge =
3, my> = 4 for the Bilinear model and m,» = 10 for the
Wiener—Hammerstein model. The values given in table 2
are averaged over 100 realizations.

Ergg = 10log [ } (doubletalk context),
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Fig. 3. Simulation results.
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5.2. Experimental results

Using speech excitation and recordings from a real echo
path, the nonlinear cascade filters are compared to the stan-
dard linear FIR filter. These sequences don’t contain near-
end speech (n,, = 0). The polynomia order, and the mem-
ory length m, arefixed: D = 3, m, = 256. Results are
obtained with Mmg1 = 100,my1 = 70,1m42 = 2,my2 =4
for the Bilinear model and m ,; = 100, m,» = 150 for the
Wiener—-Hammerstein model .

MODEL SIMULATION EXPERIMENT
ERLE Er ERLE
FIR 8.79 14.44 14.32
Hammerstein 17.28 16.61 17.49
Wiener 16.61 11.38 14.85
Wiener-Hammerstein 18.43 13.76 12.54
Bilinear 9.74 13.52 15.23

Table 2. Nonlinear echo cancellation results.

5.3. Comments

e Thesimulated example showsthat the best resultsare
obtained with the polynomia Wiener—Hammerstein
model in terms of the ERL E measure, and the polyno-
mial Hammerstein model for the double talk context.

e Theexperimental resultsindicatethat the signalsdon’t
seem to have strong influence. Best results are ob-
tained with the polynomial Hammerstein filter (fig.
4). For this reason the Wiener and the Wiener—-Ham-
merstein filters don’t have the expected resullts.

e The Bilinear filter, due to the complexity of its struc-
ture, has interesting preliminary results and need to
be explored before being definitively rejected.

6. SUMMARY

New nonlinear structures of filters are proposed for acous-
tic echo cancellation : cascade structures and the Bilinear
model. These structures are compared to the standard linear
adaptive FIR filter method. For all the contexts tested, the
Hammerstein filter has the best behaviour. Several issues
require further study, for instance : so far we have ignored
the presence of additive noisein the system. In practice, this
assumption is unrealistic.
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Fig. 4. Experimental results.
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