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ABSTRACT

Partial-update  algorithms  reduce adaptive filter
complexity by updating only a subset of taps at each
iteration. However, they suffer a processing overhead in
tap selection that can substantially reduce the
computational advantages of partial-update schemes.
Short-sort M-Max NLMS (SM-NLMS) addresses this
problem by having the advantages of other partial-update
schemes but with very low computational overhead in tap
selection. SM-NLMS uses a low-complexity Short-sort
procedure to perform tap selection and updates the
selection periodically. We show a performance analysis
based on contraction mapping for SM-NLMS using a
time-varying unknown system and quantify its
characteristics. Simulation results and the performance
analysis show that SM-NLMS performs almost as well as
NLMS but with substantially lower computational cost
involved in tap selection and updating compared to other
schemes. The straightforward structure and low
complexity of SM-NLMS make it well suited to real-time
and high-density applications such as echo cancellation
and equalization.

1. INTRODUCTION

Partial-update algorithms can be suitable for adaptive
filtering applications requiring real-time and/or high-
density implementation [1]. Typical examples in
telecommunications are echo  cancellation and
equalization. In such applications there is a trade-off to be
made in terms of the choice of the number of taps. The
adaptive filter should be long enough to model the
unknown system adequately. However, shorter filters
normally converge more quickly and are computationally
less demanding. The use of partial-update algorithms is a
good approach to this trade-off in which sufficiently long
filters can be employed but only a subset of the
coefficients is adapted at each iteration.

Partial-update algorithms can be seen to exploit
sparseness in two ways. When the unknown system’s
impulse response is sparse, such as in echo cancellation
for network echo and in VoIP, many of the adaptive
filter’s taps can be approximated to =zero [2].
Alternatively, sparseness may be present in the tap update
vector as a consequence of the distribution of the input
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samples in  the (N x1) vector

x, = [z(n),z(n —1),...,x(n — N +1)]". In both these
cases, exploiting the sparseness properties can reduce
complexity and improve performance [3].

The computational complexity of an adaptive
filter comprises [4]: (i) convolution of the regressor vector
x, and coefficients h, = [hy(n),hy(n),...,hy_1(n)] at

each time instant, n; (ii) filter coefficient updates;
(ii1) other processing overhead and housekeeping. Partial-
update algorithms reduce the cost of (ii) but with an
addition penalty in (iii) due to the requirement to select
the sub-set of taps to update — a task involving a sort
routine or other processing overhead.

This highlights the main problem we are
addressing here which is that the computational saving
due to the partial updating is offset (or possibly even
exceeded) by the additional cost of tap selection. This
motivates our study of partial-update algorithms that use
efficient tap selection procedures to minimize the
processing overhead. We present the Short-sort approach
in the context of an NLMS-based algorithm although it
can be generally applied to other adaptive filters.

Some of the first work on partial-update
algorithms was done by Douglas [1] including the
periodic and sequential updating schemes and Max-
NLMS algorithm [1,5]. The concept was developed
further by Aboulnasr leading to the M-Max NLMS
algorithm and supporting convergence analysis [3,6]. A
block-updating NLMS scheme was studied by Schertler
[7]. More recent work has been published by Dogancay
and Tanrikulu who have considered both NLMS-based
schemes and Affine projection algorithms [8]. Further
consideration has been given to network echo cancellation
algorithms and the use of proportionate NLMS schemes
[9]. Partial-update schemes have also been applied to
array processing, equalization and other applications of
adaptive filters.

regressor

2. SHORT-SORT M-MAX NLMS

In partial-update schemes such as M-Max NLMS, a sort
procedure is employed to determine the largest amplitude
samples in the regressor vector and subsequently only the
taps corresponding to the largest samples are updated. In
this way, algorithms of this class employ a sparse
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approximation to the regressor vector and hence to the
corresponding tap update vector.

The key feature of SM-NLMS is that it is able to
maintain the advantages of such partial-update schemes
but with a substantial reduction in the computational cost
of determining the sparse approximation. This cost
reduction is achieved in SM-NLMS by using the Short-
sort procedure. The Short-sort operates by considering
two regions of the impulse response. In Region 1, length
S (< N), all the taps are updated at each iteration. In
Region 2, length (N — ), a partial update is performed
using an efficient approximation of M-Max NLMS. This
approach is particularly suited to echo cancellation but
also relevant to some other applications of adaptive filters
including equalization. For example, in echo cancellation
Region 1 corresponds approximately to the ‘early
reflections’, which are large in amplitude and due to direct
coupling and strong reflections. Region 2 corresponds
generally to the decaying ‘tail” of the response.

The SM-NLMS algorithm is shown in Table 1. It
operates by selecting A out of S taps in Region 1
corresponding to the A  largest samples in
[z(n),z(n —1),...,a(n — S +1)]. The tap selection is
performed by an efficient insertion sort [10] that we refer
to as the Short-sort as presented in Table 2. The Short-sort
is used to update this tap selection every S sample
periods. The tap selection tracks the largest samples in the
memory of the filter as they move through Region 2. The
mean number of taps adapted by SM-NLMS at each
iteration is

S+ g(N - 9. 1)
The worst-case computation load of the Short-sort routine
is (A4 A(S — A)) comparisons per S iterations
compared to S(2logy(N)+2) for the SORTLINE
routine [11] used in M-Max NLMS.

The key assumption in SM-NLMS is that the set
of A largest samples in x,, is a good approximation over
Region 2 to the set of largest samples in x, . The
validity of this assumption depends on the properties of
the input signal {z(n)} and also on A (A < N) and

will be demonstrated by simulations described below.

3. ANALYSIS

This analysis considers SM-NLMS as a combination of
NLMS applied to the first S taps and an approximate
M-Max NLMS updating L = NA/S of the remaining
taps. The analysis of NLMS is given in [4]. We describe
here a new analysis of M-Max NLMS for a zero-mean
Gaussian noise input.

The tap update in SM-NLMS is written

hn+l = hn + I‘nxne(n) (2)
2p
r, = F,
X5 X,

where F, = diag(fy(n), fi(n),..., fy—1(n)) is the tap-
selection matrix and f;(n) is binary and true if tap ¢ is a
selected tap at time n. We denote the misalignment
vector v, =h, —h, and the error signal
e(n) = w(n) — xLv, where h, is the optimal system

and w(n) is the measurement noise. Samples
corresponding to selected taps have variance k. To
introduce a time varying system model we employ a first-

order Markov process [12]
hn+1 = ahn +V1-— a2S7L (3)
E[h,h]|=E[s,s. | = 0. 4)

Convergence in the mean can be derived using a
contraction mapping approach [13]:

0 <|E[I- pun)E,x,x; ]| <1 (5)
which implies for z(n) i.i.d.
2 2
0 < p(n) = —- (©6)

< .
T N-1 2 .
Xp Xy Zi:() f;(n)ﬂ? (n - Z)
For convergence in the mean square, we consider the trace
of the autocorrelation matrix of the misalignment [13]:

Vol = hn+1 - l~ln+1 =h, — (aﬁn +v1l-— a23n> + anne(n)
=h, —h, +h, —ah, —v1—a’s, + [,x,e(n)

= [I T, x,x! ]v" + Ix,w(n) +(1—a)h, —v1—a’s,

Rv,n+1 =E [Vn +1V§+1 ]

=R,, - E[[x,x]|R,, —R,,E[x,x/T7|
+E [1" x,x v, vix, xITT ]

+E[T,x,x 7 o)

+(1 — a)’E[h,h] |+ (1 - o®)E[s,s] |

and proceed to evaluate tr {Rv,n+1 } using

E[annxn ] = E[X,LXT]__‘T] — £ 2“’

L4u
NNZQ

tr{E[I‘ x,x v, vix XTI‘T]} = tr { k[2Ry, +tT{Rv.n}]]ﬁ

2
tI‘{E[I‘ annr,{]}ft {L 4“ KI}: 4/1,[//{

N N%5t N}
IDINRAOIAO)
Zi:O fii(n)
leading to

V -374




4ulk 4Lk
tr{Rv,n+1} = tI‘{I{v,n }[]— - ]\;202 + (N + 2) ]</~30,2 ]
xr xr
+ ;4\;; L ko2 +2(1 — a)No?.

I
Applying the contraction mapping concept we can show
convergence when

dplk (N + Q)u]
— 1- 1.
N%o?2 [ N <
which is satisfied by
0< < NN +2). (M

We can then determine the excess MSE in SM-NLMS, ¢,
by approximating the mean misalignment vector, 7, in

the steady state by the weighted sum of contributions from
NLMS and M-Max NLMS:

S N-S§

= N Ivus +— N TMMazNLMS )
giving £ = %77
2 (1—a)N?%? UJ;(S/ + §) o2
¢ 2pug

where ¢ =1 — pu((N +2)/N).

4. EVALUATION

Evaluation results are presented for SM-NLMS, M-Max
NLMS and NLMS for a system length of N = 64. SM-
NLMS was tested using (A) 36 and (B) 15 tap-updates per
iteration, so that {L,S,A, N} takes values {36,8,4,64}
and {15,8,1,64} respectively. M-Max NLMS was tested
choosing numbers of tap-updates that result in
computational costs equivalent to SM-NLMS in cases (A)
and (B). The computational cost of tap selection is 14, 2.5
and 1 comparisons per iteration for M-Max NLMS, SM-
NLMS(A) and SM-NLMS(B) respectively.

Mean square error (MSE) convergence tests are
shown in Figure 1 using 100 trials, white Gaussian noise
input, a stationary unknown system of length 64, step-size
of 0.1 and measurement noise at 40 dB SNR. The
convergence speed obtained for NLMS and case (A) for
both partial-update methods is similar. In case (B), the
convergence speed of SM-NLMS is substantially better
than M-Max NLMS for the same overall complexity.
Figure 2 shows SM-NLMS performance in an echo
cancellation application in terms of echo return loss
enhancement (ERLE) for a sentence of speech. The
unknown system is a synthetic office impulse response of
length 2048. Performance for SM-NLMS(A) is similar to
NLMS with 64 taps. SM-NLMS(B) performs around 2 to
5 dB below NLMS during periods of speech activity, but
has only one quarter the cost of tap updates.

Conwergence

SM-NLMS(A) and M-Max NLMS(A)

SM-NLMS(B) and M-Max NLMS(B)
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Figure 1. Convergence behavior for 40 dB SNR, Gaussian
noise input, 64 tap unknown system.
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Figure 2. Echo Return Loss Enhancement for speech data

5. CONCLUSIONS

This paper has presented the SM-NLMS partial-update
algorithm and its convergence analysis. The main
advantage of SM-NLMS over other partial-update
methods is its low complexity tap selection. Tap selection
cost in SM-NLMS scales with the number of taps to be
updated, unlike M-Max NLMS in which the cost depends
on the filter’s total taps. Performance of SM-NLMS and
M-Max NLMS are roughly equal when updating more
than about half the filter’s taps. However, SM-NLMS out-
performs M-Max NLMS when the overall complexity is
reduced below this level, making SM-NLMS a good
choice for high-density/low-complexity applications.
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Parameters
N number of taps

1 adaptation gain

e small positive constant

S sort window length (< N)

A number of selected samples (< S)

Signals

x, = [z(n),z(n = 1),...,z(n — N + D],
d(n) = desired response

B, = [ho(n) o (n),-ees b1 (n)]

F, = diag(fy(n), i(n),..., fy 1(n))

e(n) = error signal

Initialisation
F,=0 h,=0

Algorithm

for n = 0,1,2,...
F, = dlag(ovf()(n - 1)‘fi(n - 1)7‘“1.[\/—2(” - 1))
e(n) = d(n) — x;h,
fori=0,1,...,5 — 1

. . 24
h, i) = h,(i) + ——
n+l() n() xfxn +e
fori=95,8+1..,N—1

£, (n — ie(n)

: 2
b (i) + ——F—
ann Jr 8

h, (i), otherwise
if (nmodS) =0
fori =0,1,...,8 —1

1, if z(n — i) is one of the A largest values of x,,

2, (n —ie(n), if filn) =1

hn+l(i =

fim) = 0, otherwise

endif

Table 1. SM-NLMS Algorithm
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Parameters
S : sort window length (< N)
A : # samples to select (< S)
c . counter

Signals

q = [q0,q1,---,qa—1] : storage

m : smallest ¢;, ¢ = 0,1,....,A—1
mi : index in q of smallest sample

Algorithm
for n = 0,1,2,...

¢ = nmodS
if (¢ = 0) then

m = 0o
endif
if (¢ < A) then
¢ =c
if m > |z(n)|then
m = [z(n)]|
mi = q.
endif
else
if m <|z(n)|
Qi = ¢
m = min value in [z(n — ¢;)], ¢ = 0,1,..., A —1
mi = value of ¢ for [z(n — ¢;)]=m, i =0,1,..,A—1
endif
endif

Table 2. The Short-sort Algorithm
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