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ABSTRACT

In wireless communications, spatially distributed signals originate
from local scattering around the transmitter. Spatially distributed
signals cause conventional high-resolution methods to show degra-
dation in performance, since the underlying data model is of full
rank theoretically. In this paper, a relationship between the dis-
tribution of the spatial spread and the Power Azimuth Spectrum
is derived. Using this relationship, two simple and robust esti-
mators based on the conventional beamformer and Capon’s beam-
former for estimation of the nominal direction and spatial spread
are found. The proposed estimators show very good performance
in numerical examples.

1. INTRODUCTION

Many classical Direction Of Arrival (DOA) estimation methods
are based on point source models. In some cases, for example,
in indoor radio communications, the point source assumption is
violated, and a distributed source model would be a better approx-
imation [8]. Another example is fast fading in mobile commu-
nications, where the elevated base-station antenna, due to local
scattering around the mobile, experiences the received signal as
distributed in space rather than being emitted from a point source
[12]. In conventional high-resolution DOA estimation methods
this leads to deterioration in performance, and therefore a number
of high-resolution estimators for distributed sources have recently
been proposed, e.g. [2, 3, 5, 9, 10]. Many of these estimators make
assumptions on the shape of the signal distribution, assume narrow
spatial spreads, and eigen-decompose the full-rank covariance ma-
trix into a pseudo-signal subspace and a pseudo-noise subspace.
Most often they render a multi-dimensional optimization problem,
implying high computational loads.

In many applications, e.g. fast fading mobile communications,
wireless indoor communications etc., we know little or nothing
about the spatial distribution of the signals. Therefore, it would
be attractive to make use of a robust and simple beamformer that
does not make any assumptions on signal distribution nor uses any
hard-to-choose design parameters.

In this paper, the work in [7] is extended and the resulting es-
timator performance is dramatically improved. We first derive a
relationship between the Power Azimuth Spectrum (PAS) and the
underlying distribution of the scattered source signal. The result
enables the use of simple beamforming-based techniques for lo-
calization and spread estimation of a distributed signal. Numerical
examples show that the proposed estimators perform very well.
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2. DISTRIBUTED SIGNAL MODEL

We use the distributed signal model suggested in [1], in which the
distributed signal impinging upon a Uniform Linear Array (ULA)
is modeled as being emitted from a tight cluster of � spatially
separated point sources (or scatterers), each with random complex
gains. Thus, the received signal can be written as
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where �����, ��, and ������, are, respectively, the complex gain of
ray �, nominal (or mean) DOA, and random spatial (angular) de-
viation of ray �. The �-sensor array steering vector is denoted by
���� � ��� 	���� ��� �� 
 
 
 � 	��������� ��� ��� , where � � 	�
�
(wavelength – �) denotes the circular wave number, and � is the
element separation. Finally, ���� denotes the transmitted source
signal, and ���� the noise, which is modeled as a zero-mean com-
plex circularly symmetric, and spatio-temporally white Gaussian
process with variance �	.

As in [1, 9], it is also assumed that the scattering environment
changes rapidly compared to the mean DOA and spread parame-
ters, i.e. the random complex gains ����� are assumed to be tem-
porally white. Further, they are also assumed to be independent
from ray to ray, zero-mean, and circularly symmetric
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where Æ�� is the Kronecker delta function.
The random spatial deviation ������ is assumed to be a zero-

mean random variable described by a Probability Density Function
(PDF) ��������. The PDF is assumed to be symmetric in �� and
parameterized by a spread (or standard deviation) parameter �� .
Note that the resulting estimators do not require a symmetric PDF.

By assuming large �, and using the central limit theorem, it is
argued in [1, 9] that ���� is a zero-mean complex Gaussian vector
with covariance matrix
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where � � �	��
	
	 � ��������	��		 is the source signal power in-

cluding the path gain factor, and ������ ��� is the channel co-
variance matrix (excluding the path gain) of the zero-mean Gaus-
sian channel vectors. In the limit, the cluster of scatterers can be
viewed upon as a continuum of scatterers, i.e. the spatio-temporal
complex gain can be described by a temporal stochastic process
����� ��, which has a continuous spatial distribution with covari-
ance kernel �

�
������ ���

����	� ��
�
� �		�� �������Æ���� � ��	�. In

this context, �������� can be viewed upon as a continuous Spatial
Power Density Function (SPDF).

The spatial deviation is commonly modeled by a Gaussian dis-
tribution, i.e. �� � � �
� ���. For small Gaussian spatial spreads,
the ������� entry of the covariance matrix can be written as [1, 2]

������� ������� � �
������ �����

� �
���

����� �����
	�� (4)

where �� � �� ��� �� denotes the spatial frequency, and �� �
���� ��� �� denotes corresponding standard deviation.

3. BEAMFORMING-BASED ESTIMATION

The DOA of a single deterministic point source is usually taken as
the peak of the Power Azimuth Spectrum (PAS)

�� � �����
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where �� ��� denotes the estimated PAS, from the sample covari-
ance matrix. Using the true covariance matrix, the PAS is given
by
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– CBF

�

��������� ����
– Capon.

(6)

Capon’s beamformer [4] has higher resolution than the Conven-
tional Beamformer (CBF). This is achieved at the expense of re-
duced white noise suppression. The performance of CBF for dis-
tributed sources was analyzed in [6], where the nominal DOA es-
timate was taken from Eqn. (5). In general, the performance of the
peak-finding algorithm is poor for distributed sources.

Assume that the steering vectors corresponding to distinct di-
rections are orthogonal for large �, i.e.
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Hence, for large � we have �
�
�

������� � �, where ����

denotes the��� steering matrix of the vector � � ���� 
 
 
 � ���
� .

The discrete version of the covariance matrix in (3) can be
written �� �


�
��� �����������


���� � ���������
���,
where���� denotes a diagonal matrix with the power mass entries
��������� � �����. Since it is only non-zero values of ����� that
contribute to the channel covariance matrix, we let ����� � 
 to
make � full rank. Note that in this context, �� is equal to the
nominal DOA �� plus the previously used random deviation ��� of
ray �.

Using the matrix inversion lemma and assuming large �, the
inverse covariance matrix becomes ���� � ���� � �	���� �
�����
 ��	���� � ����
 ���	�� where �� is the diagonal
matrix with entries � ������ � � ������

��
���������
. It is now straight-

forward to insert �� and ���� into the expressions for the PAS
given by Eqn. (6). Doing so, we find the following relationship

� ���� � ������ ��� ��� � � � � 	 
� � 	 
 � (8)

where � � ��, � � �	 for the CBF spectrum, and � � �,
� � ��

�
for Capon’s spectrum.

Now, to find our parameters 
��� ��� we have to decide the
support � of the underlying PDF. Also, since the underlying PDF
does not necessarily have a finite support (e.g. Gaussian PDF),
we have to restrict the support to be finite. For example, the sup-
port of a Gaussian PDF with mean �� and standard deviation ��
can with negligible error be restricted to ��� � ��� � �� � ���� �
���
Æ� �
Æ�. The obvious problem that arises here is how to choose
the support. One criterion for choosing it is to find the region
where the signal part of the PAS is distinct from the noise power
level. The best would of course be if we could find the interval
from data, but for now it is left as an open problem.

When we have decided the support �, the scaling factor �
is easily found. We simply subtract the minimum value of � ���
on �, which corresponds to �, from � ���. Then we use the fact
that ����� ��� ��� is a PDF (or rather a probability mass function)
and should therefore sum to unity, i.e. � can be found as � �


����
�� ����, where �� ��� � � ��� �������� ��� and is posi-

tive semi-definite.
Putting it all together and using the standard definitions of

mean value and standard deviation, the nominal DOA actually be-
comes the Center of Mass (CM) of �� ��� on �

�� �
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and the spatial spread parameter or standard deviation is given by
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As mentioned earlier, when � 
 �, the distributed source
can be described by a continuous SPDF. Consequently, if we com-
pute the PAS densely enough, the SPDF can be acquired from the
PAS. It should also be mentioned that there is no requirement for
the SPDF to be symmetric.

Finally, since the true covariance matrix �� is unknown, we
have to use the sample covariance matrix which is defined as ��� �
�
�


�

�� �����


��� to estimate the PAS. It is well known [11] that
��� converges (with probability one) to �� as � 
 �. Hence,
the estimated PAS is a consistent estimate of the true PAS, and
our estimate of ���� ��� ��� becomes consistent, thus leading to
consistent estimates of the nominal DOA and spread parameters.
Note that we have used the assumption of orthogonal steering vec-
tors. If the number of sensors is too small, the estimate of �� will
deteriorate.

Fig. 1 illustrates �� ���
� for the CBF and Capon spectra when
the theoretical angular distribution is Gaussian. Also included are
Non-Linear Least Squares (NLLS) curve fits of ����� ��� ��� � �
(where ���� ��� ��� is a Gaussian PDF) to the PAS. The NLLS
problem is optimized over all four parameters but since it is lin-
ear in � and � it can be separated and therefore a two-dimensional
search is needed to find �� and �� . Both of the spectral-based
PDF estimates �� ���
� show good fit to the underlying Gaussian
PDF and motivate the relationship given by Eqn. (8). Note that
the NLLS fits are slightly worse than their corresponding PDF es-
timates. The support for the CBF and Capon estimates is limited
to � � ��� � ��� � �� � ��� � which causes a better fit than their
corresponding NLLS fits.
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Fig. 1. Estimated PDFs. Gaussian spread, �� � 
Æ, �� � �Æ, 18
sensors, theoretical covariance matrix with �
�	 � �
 dB.

4. NUMERICAL EXAMPLES

In this section simulations are presented to illustrate the perfor-
mance of the different beamforming-based techniques for one Gaus-
sian distributed source (�� � 
Æ, �� � �Æ) versus the more com-
plex subspace-based DISPARE [5] and WPSF [1, 3] algorithms.
WPSF is not a very practical algorithm but serves as a bound on
how well any low-rank approximation-based algorithm can per-
form. The Cramér-Rao Lower Bound (CRLB) and NLLS curve
fits based on the Capon spectrum are also included in the figures
for reference. Unless otherwise stated, an eight-element ULA with
half-wavelength element separation is used. The received signal is
generated from the model given by Eqn. (1), with � � �

 ran-
dom DOAs and complex Gaussian gains �����, and with a new
independent realization for each snapshot. The source signal is an
equiprobable BPSK sequence. The sample covariance matrix is
computed over �

 independent channel realizations (snapshots).
The DISPARE and WPSF estimates are acquired by letting the di-
mension, �, (design parameter) of the pseudo-signal subspace be
such that it contains at least of ��% of the signal energy. To locate
the solutions, a two-dimensional Nelder-Mead simplex search, ini-
tialized at the true parameter values, is used. We also let DISPARE
and WPSF use the correct assumption that the deviation is Gaus-
sian distributed. Again the support of the Capon and CBF esti-
mates is limited to � � ��� � ���� �� � ����. Since the estimate
of �� is taken as the CM of the spectrum, it is not that sensitive to
the choice of �. Clearly the spread estimate becomes more sensi-
tive to the width of the interval �. The PASs are computed with a
resolution of 

�Æ .

Figs. 2 and 3 show the Root Mean Square Error (RMSE) of the
estimated parameters ��� and ��� versus SNR, respectively. Figs. 4
and 5 show the RMSE of estimated DOA and spread versus true
spread �� for �
 dB SNR. Finally, Figs. 6 and 7 show the RMSE
of estimated DOA and spread versus number of sensors for �
 dB
SNR. The RMSE is computed over �


 independent trials for
each parameter.

We see that it is better to choose the CM instead of the peak
when estimating the nominal DOA. Capon show very good perfor-
mance when estimating both the nominal DOA and spread, while
CBF suffers from resolution problems. It is worth noting that the
RMSE of the spread estimate is below the CRLB for low SNRs
(�� dB and less). This is possible because information about the
support � is incorperated into the estimators but is not captured by

the CRLB. This is typically showing at low SNRs.
For increasing spread, DISPARE shows deterioration which is

probably caused by a bad choice of� while WPSF and beamform-
ing are less sensitive to an increasing spread. Also note that the
resolution problem of the CBF is overcome for increasing spread.
For the same reason as shortly discussed above, Capon’s spread
estimates are again below CRLB (SNR is �
 dB).

Finally, as one might expect, when taking the CM, the per-
formance increases as the number of sensors increases. This is
not the case when we take the peak value. Note that the CBF
spread estimates become significantly better for increasing num-
ber of sensors, which is due to higher resolution capability. The
Capon spread estimates are again below CRLB for small numbers
of sensors and low SNR (�
 dB).
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Fig. 2. RMSE of ��� for different SNRs. Gaussian spread, �� � 
Æ,
�� � �Æ, eight sensors, 100 scatterers.
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Fig. 3. RMSE of ��� for different SNRs. Gaussian spread, �� � 
Æ,
�� � �Æ, eight sensors, 100 scatterers.

5. CONCLUSIONS

We have investigated the use of simple beamforming-based tech-
niques to estimate the nominal DOA and spatial spread of a dis-
tributed signal. A relationship between the PAS and the underly-
ing PDF was derived and from that result we found our estima-
tors. The beamforming-based estimators showed very good per-
formance and the estimators based on the Capon spectrum outper-
formed the two subspace-based estimators that were used in the
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Fig. 4. RMSE of ��� for different spreads �� . Gaussian spread,
�� � 
Æ, eight sensors, 100 scatterers, 10 dB SNR.
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Fig. 5. RMSE of ��� for different spreads �� . Gaussian spread,
�� � 
Æ, eight sensors, 100 scatterers, 10 dB SNR.

numerical examples. One open problem remains and that is how
to choose the support or decide on the interval of the signal part
of the PAS. If the chosen support is too large, the spread estimate
will deteriorate. The nominal DOA estimate is less sensitive to the
choice of support.
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