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 Abstract 

This paper describes a method for improving the small 
sample support space-time adaptive processing (STAP) 
performance of distorted linear arrays. Receive arrays 
which deviate from a straight line may occur, for example, 
in conformal radar and towed sonar array applications.  
With limited training data, distorted linear arrays suffer 
greater signal to interference plus noise (SINR) loss due 
to inflation of the clutter covariance matrix rank.  In this 
paper, Brennan’s rule for the clutter covariance matrix 
rank is extended to 2-D arrays and used to motivate the 
development of a space-time interpolation (STINT) 
method for clutter rank reduction. By using a space-time 
transformation that minimizes the constrained mean-
square-error between clutter at the distorted array and a 
virtual uniform line array, STINT processing lowers the 
clutter covariance rank and hence improves output SINR 
when training data is limited. Simulation results also 
indicate that STINT processing reduces the minimum 
detectable target velocity (MDV) achievable by finite 
sample support STAP. 

1. INTRODUCTION 
Given a sufficiently accurate estimate of the space-

time clutter covariance matrix, STAP has a significant 
advantage over deterministic beamformer-Doppler weight 
design because clutter nulls are placed precisely where 
they are needed for the observed data and array 
calibration. When the clutter is inhomogeneous in range, 
however, STAP is often seriously degraded by a lack of 
snapshot support. Improving limited training data 
performance and also reducing the computational 
requirements for STAP has motivated the development of 
partially adaptive schemes [1] which utilize fewer 
adaptive degrees of freedom requiring fewer snapshots to 
estimate the interference. The effectiveness of partially 
adaptive schemes is primarily dictated by the rank of the 
underlying clutter covariance matrix of the received array 
data.  In the case of a uniform linear array (ULA) aligned 
along the direction of platform motion, this rank ideally 
corresponds to the well-known Brennan’s rule. However, 
array shape distortion or platform velocity misalignment 
generally results in: 1) increased clutter covariance matrix 
rank [1], and 2) range inhomogeneity which limits sample 

support [2]. In order to overcome the effects of clutter 
rank inflation, we have developed a partially adaptive 
approach derived by mapping the clutter returns from a 
distorted array to a virtual ULA via joint space-time 
interpolation. A separable space-time interpolation 
scheme has been developed previously [3] which 
“focuses” the array response vectors from adjacent range 
cells onto a given range cell. In this paper, we design non-
separable space-time interpolation filters to minimize the 
interpolated clutter mean-square error between the 
distorted array and the virtual ULA, subject to a constraint 
maintaining the desired target response. The low space-
time clutter rank facilitates mapping of clutter from all 
directions via a single linear transformation, whereas in  
[3] the mapping is different for subsets of directions and 
Doppler frequencies. 

2. STAP MODEL 
Consider a narrowband pulse-Doppler radar system 

using an -element array and an N M -pulse coherent 
waveform with pulse repetition interval T , traveling with 

a platform velocity v  along the x-axis.  The received 

clutter data at the n  sensor located at 

r
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th

( ( 1) ,n nx n d y= − , sampled at time m rt mTτ= +  can 
be modeled as: 
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where ( )kα θ  is the complex Gaussian scatter amplitude 

from azimuth kθ , ( )2 / sin(k af v )kλ θ= is the clutter 
Doppler frequency and λ is the radar operating 
wavelength. We consider ranges where the variation in 
elevation angle φ is negligible.  Without loss in generality 
it is assumed throughout that 0φ = dand / 2λ= . The 
space-time received data snapshot across a single coherent 
processing interval (CPI) can be written as  
 ( ),t t t tfα θ ,= + +x v r ε  (2)  
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where ( ,t t t )fθv

t

 is the  target space-time 

response, 

1MN ×

α  is the complex target amplitude, r is the 

 received clutter from all directions and ε is 
 additive white noise with covariance 

1
1

MN ×
MN × 2

MNσ I .  
The space-time target response can be expressed in terms 
of the 1M ×  temporal response ( )tfb  and the 

spatial response 1N × ( t )θa  as  

4
L
π
λ

xk

yk
2 2(2 ) xkπ λ −

               

 

 

 

 

 

 

 ( ), ( ) (t t t t tf f )θ θ= ⊗v b a  (3)  

4
( 1 ( 1) )N M

π
β λ− + −

 
where , ( ) 2 ( 1) t rj n f T

t n
f e π −=  b

[ ] ( ) ( ) ( )( )2 / sin( ) n tj x
t n

e π λ θθ +=a cosn ty θ
t ,θ  is the target 

location, tf is the target Doppler, denotes the 

Kronecker product and [ ] is the element of .  

⊗
thn xnx

 

 Fig. 1.   2D Clutter Spectrum

3. CLUTTER RANK 
The approximate rank of the space-time clutter covariance 
matrix for a ULA with inter-element spacing d , is given 
by the well-known Brennan’s rule [1].  

 ( 1)ULA N Mρ β≅ + −  , (4) spanne

 For an array traveling along the x-direction with a 
transverse distortion of / 2Lλ  and effective aperture 
along the x-direction of [ 1 ( 1) ] /N M 2β λ− + −  the 
analogous 2-D Brennan’s rule can be derived in a similar 
fashion. For a wave propagating with wavenumber 

2
x yk k k= +x yk k k= + 2

..

, the clutter spatial spectrum lies on a 2D 

ring as shown in Fig. 1. The 2-D Brennan’s rule is given 
by the number of spatial frequency resolution cells 

d by the locus of the clutter wavenumber spectrum. 
This is found to be approximately  

, the clutter spatial spectrum lies on a 2D 

ring as shown in Fig. 1. The 2-D Brennan’s rule is given 
by the number of spatial frequency resolution cells 
spanned by the locus of the clutter wavenumber spectrum. 
This is found to be approximately  

where 2 /a rv T dβ = is the number of half inter-element 
displacements traversed by the array moving along its 
axis, in one sampling interval and x    is the smallest 

integer x≥ . 

  2 ( 1)DIS N L M2 ( 1)DIS N L Mρ β≅ + + −    (6) 

Clearly from (6), we observe that the clutter rank 
nearly doubles even for small transverse distortions.  

 The approximate clutter rank for a ULA with 
/ 2λ  spaced elements can be derived using the 

relationship between the “effective aperture” – spatial-
bandwidth product and the clutter rank [4]. In this way, 
the spatio-temporal spectrum of the clutter is interpreted 
purely in terms of its “effective” 1D spatial spectrum. The 
“effective aperture” defined with respect to the maximum 
unambiguous phase change across the clutter space-time 
steering vector from a single clutter patch [1], is given by 

 while the maximal normalized 
spatial bandwidth is . Therefore, the approximate 
clutter rank is given by    

4. SPACE-TIME INTERPOLATOR DESIGN  

The objective here is to design a linear transformation that 
“interpolates” the clutter space-time steering vectors from 
a distorted array to fit those from a virtual ULA while 
simultaneously preserving the target’s space-time 
response. Let   
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(5) 
λ

represent the MN J×  matrix of clutter space-time 
steering vectors for the distorted array, across a fine grid 
in azimuth, where ( )kϖv is the space-time steering 

vector from a single clutter patch  at kθ ,with normalized 

Doppler frequency k k rf Tϖ =  and is the number of 
clutter patches. Let 

J

( ) ( )l Jϖ ϖ1=   V v v deno e te th MN J×  

clutter steering matrix for a virtual ULA with inter-

which is the same as Brennan’s rule.  
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element spacing / 2d λ=

dV

, traveling with the same 
velocity as the distorted array. Since the clutter steering 
matrices and span the clutter subspace for the 
ULA and the distorted array, their ranks are respectively 
given by (5) and (6). The goal is then to design an 

lV

MN M×
[

N  rank reducing transformation 

]1 MNt=T t

T

 so that T V , while 
simultaneously preserving the target response.  The 
problem can be formulated in terms of the columns of 
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the pseudo-inverse of . The solution has excellent 

interpolation properties because the 
2A

DIS MNρ . The 

rank p of the interpolation matrix H=W T can be 
shown to be one more than 1D Brennan’s rule for the 
virtual ULA. It follows that the interpolated clutter rank is 

p≤ . From the SVD of HW = U , the distortion 
compensated STAP weight vector can be computed as   

ΛV
l

 1H H
x t

−w = V(V R V) V v  (12) 

 H
d i  (8)  W

subject to the constraint 

 ,iv=  (9)  

where is the V MN p×  matrix of right singular vectors 
of . For finite sample support, when the estimated 

covariance matrix  is used instead of R , the reduced 

column dimension of  provides improved statistical 
stability over conventional STAP. Note that the 
expression for the STAP weight in (12) is similar to that 
obtained using partially adaptive STAP schemes [1] when 
the transformation therein is replaced by . Also note 
that the STINT technique can be easily generalized to 
include the presence of jamming by incorporating 
constraints which preserve the jammer response, into (9). 

ˆ
xR

V
x

V
where HV ,1 ,  is the 
target space-time steering vector for the distorted array 
and  represents the conjugate of the target response for 
the  space-time element of the virtual ULA. The 
constraint preserving the target response in (9) is 
necessary since it would otherwise be distorted during 
clutter interpolation. In the current framework, a separate 
interpolation filter needs to be designed for each target 
Doppler and azimuth, however, the STINT technique can 
easily be extended to include a range of target 
directions/Doppler frequencies by incorporating multiple 
constraints into (9). In this paper, we shall evaluate only a 
single target constraint. 

t

5.  SIMULATION EXPERIMENTS 

                  The optimization in (8) can be reformulated as 
an unconstrained least squares problem in the subspace 
orthogonal to the constraint subspace. Let  

 r 0  (10)  

represent the QR decomposition of the constraint vector 
where is an vector and  is an N MN×  
orthonormal matrix. The equivalent unconstrained least 

squares problem is then to solve for t Q from   

 
[ ]

 (11) 

Simulations were performed using a 30 element distorted 
array with 5M = , .5mλ = , 1β = , clutter to noise ratio 

50dBCNR =  and ( )1x n / 2n λ= − . For all finite 
time simulations, 80 training data snapshots were used to 
compute the STAP weights. From Fig. 2, we see that the 
clutter rank is 34 for the uniform linear array and 
approximately 72 (corresponding to 2-D Brennan’s rule) 
for the distorted array. Figures 3 and 4 show the finite 
sample azimuth vs normalized Doppler adapted patterns 
for the distorted array and the compensated array 
respectively, steered towards a target with  and 45tθ =

.3tϖ = −

135tθ

. Note the substantially reduced sidelobe levels 
for the compensated array. The second mainlobe at 

,ϖ .3t= = −  is due to the left-right ambiguity of 
the linear array. Fig. 5 indicates the SINR loss relative to 
diffuse-noise limited optimum processor at the target 
azimuth for all Doppler frequencies for the various array 
configurations. Clearly, we see  SINR 
improvement is obtained using the interpolated array. 
Also note that the dip in SINR is narrower for the 
interpolated array compared to the distorted array 
indicating a lower MDV using STINT. Note the linear 
array SINR performance serves as an upper bound for the 
asymptotic as well as finite sample performance of the 

5dB≈

where ]2A ,    1
i

i ty v r=   and is   †
2A
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interpolation technique. Fig. 6 shows the loss in 
performance, relative to that with perfect covariance 
knowledge, due to covariance matrix estimation. 
Averaged over Doppler and azimuth, STAP with 
interpolation filtering offers as much as 10 dB gain at low 
number of snapshots, with performance comparable to the 
linear array. Note that both the linear and interpolated 
arrays require fewer snapshots compared to the distorted 
array, to achieve SINR close to their asymptotic values. 
This stems from the fact that the clutter rank for the 
interpolated array is approximately the same as for the 
linear array and therefore fewer snapshots are required to 
estimate the clutter covariance matrix [1] as compared to 
the distorted array which requires approximately twice the 
number of snapshots to achieve similar performance. 

 

 

Fig. 4. Distorted Array Adapted Pattern 

6. CONCLUSION 
Distortion of nominally linear arrays with limited 

backlobe rejection leads to substantial increase in the 
clutter covariance matrix rank. To reduce the clutter rank 
we design constrained MMSE interpolating filters that 
“interpolate” the clutter space-time steering vectors from 
the distorted array to fit those from a virtual ULA. With 
relatively low sample support, the proposed interpolation 
technique is found to yield an improvement in low sample 
support SINR on the order of 10 dB. 

 
Fig. 3. Interpolated Array Adapted Pattern  
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Fig. 6. Conditioned SINR 

Fig. 2. Clutter Eigen Spectra 
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