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ABSTRACT scenarios witlwavefront distortions resulting from environmental

. . . inhomogeneities, multipath propagation, local scattering and fad-
Adaptive beamforming methods are known to degrade in the pres-ing, as well as near-field interference [7].

ence of both signal steering vector errors and interference nonsta- . .
In this paper, we develop a new approach to robust adaptive

tionarity. I_n this paper, we develop a new approach to adaptive beamforming. Our approach providi@nt robustness against the

Zﬁgmg)l:?];ré%rvggfhhi;Stf;)g:jygg?ﬁ:toﬁiar‘r']?;;ttigﬁssf m’g ngﬁsr;_c::n;; si_gnal steering vector errors ar_1d nonstationgry interferers w_ith ar-

bealmforming performance. A computationally efficient convex eoltrary wavefronts to preyent signal self-nulling and ensure.lnte.r-
optimization based algorith.m is proposed to compute the beam_ference nulling, respectively. It represents a further genergllzatlpn
former weights. Computer simulations compare the performanceOf the me_thod of [8] and [9] where only th? robustm_asg against sig-
LT . . nal steering vector errors has been considered. Similar to [8]-[9],
of our algorithm with other robust adaptive beamforming tech- our beamformer is based on the concept of the worst-case per-
niques. formance optimization but uses it in a more general form. The
parameters of our algorithm can be optimally chosen based on

1. INTRODUCTION known levels of uncertainty of the signal steering vector and the

array data matrix. We show that the weights of the proposed ro-

The performance of traditional adaptive beamforming methods is pust beamformer can be efficiently computed by means of a con-

known to degrade severely if the array weights are not able to adapt/ex optimization-based algorithm using second-order cone (SOC)
sufficiently fast to nonstationary interferers [1]-[5]. Such nonsta- programming.

tionarity can be caused by interferer and antenna motion, antenna
vibration, as well as propagation channel variability. Moving in-

terferences represent an especially serious problem in the case of 2. BACKGROUND

large aperture arrays [3]. As a result, robust adaptive beamforming

techniques are required in these cases. The output of a narrowband beamformer is given by
Recently, a few methods have been developed to improve the u

performance of adaptive beamforming in nonstationary environ- y(k) = wx(k) (1)

ments. Several authors exploited the idea of artificial broadening ) o )

of the beampattern nulls in unknown interfering directions. Two Wherek is the time indexx(k) is the M x 1 complex vector of

different approaches have been independently developed using thi1e array dataw is the A/ x 1 complex weight vector)/ is the

idea. The first one exploits the so-calldata-dependent deriva- number of array sensors, ad” is the Hermitian transpose. The

tive constraints (DDCs) [2]-[3], whereas the second one is based Shapshot vector can be modeled as

on matrix tapers (MTs) [4]-[5]. As shown in [6], the DDC and

MT approaches are closely related to each other. Unfortunately, x(k) = s(k)+i(k) + n(k)

both of them aread hoc techniques and, hence, their performance = s(k)a+i(k) + n(k) (2

can be unpredictable in scenarios with rapidly moving interferers.

Moreover, the DDC and MT methods are applicable to interfering wheres(k), i(k), andn(k) are the desired signal, interference,

sources with the planeavefronts only. Clearly, the assumption and noise components, respectively. Haté) is the signalvave-

of planewavefront interferers may become violated in practical form, anda is the signal steering vector (which is assumed to be
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whereR;i1n = E{[i(k) + n(k)][i(k) + n(k)]"}isthe M x M To provide the robustness against both the signal steering vec-
interference-plus-noise covariance mat#,is the signal power, tor errors and data nonstationarity, we will obtain the beamformer
andE{-} denotes the statistical expectation. It is easy to find the weights by solving the following optimization problem:

solution for the weight vector by maintaining the so-caltiestor- ) - ) .

tionless response towards the desired signal and minimizing the ™in max X" wl| subjectto [w"a|>1 V [|6]] <e (12)
output interference-plus-noise power. Hence, the maximization of -

(3) is equivalent to Note that the beamformer weights in (12) are obtained by means
. . of minimizing the worst-case output power (i.e., the power that
H‘lni,n W RitaW subject to wia=1 4) corresponds to the worst-case norm-bounded mismAjubject

to the distortionless response constraint which must be satisfied for
In practice, the true interference-plus-noise covariance matrix the stee_ring vector with the worst-case norm_—bounded érror
Riytn is unavailable. Therefore, this matrix is replaced in (4) by Equivalently, the problem (12) can be written as

the sample covariance matrix . I I
min max [|X"w+ A7 w]|
ol

1 w AlF<
R=4XX ®) subjectto  min lw?(a+6) > 1 (13)
whereX = [x;, -, xn] is theM x N array data matrix and/ The following results can be proven for the constraint and the
is the number of snapshots. After such a replacement, the prOble”bbjective function in (13)
(4) can be rewritten as Lemma 1, [8]: If '
Ir‘lgn IX " wl| subject to wla=1 (6) lwia| > e||wl| (14)

From (6), the following well-known solution can be found for the then
weight vector:

. H H
- = — 1
w=aRa ) min [w (a+0)| = |wa| —ef[wll (15)
wherea = (a”R~'a)"! is the norm constant which does not Proof: Applying the triangle and Cauchy-Schwarz inequalities

affect the output SINR (3). The solution (7) is commonly referred zjong with||§]| < ¢, we have
to as the sample matrix inverse (SMI) based minimum variance
distortionless response (MVDR) beamformer. |wa+wd| |wal — |w" 8|

In[10]-[12] (also, see references therein), the diagonal loading |wHa| — el (16)
approach to robust beamforming has been studied. It has been

shown that this approach can greatly improve the robustness agair; can be readily verified that the minimum pi7a + wi | is
nst errors due to steering vector mismatch and small sample size. 5chieved with

v v

§ = — 2 _ced? 17)
3. ROBUST BEAMFORMING USING WORST-CASE lTwil
PERFORMANCE OPTIMIZATION "
¢ = angle {w a} (18)
Let us now assume that both the signal steering vector and the data ) ] .
matrix are known imprecisely and introduce the followiagual and is equal to the right-hand side of (16) if (14) holds true.[]
(mismatched) steering vector and data matrix as Lemma 2: Let
— H H
a = ats @ fw) = max [X"w+ Aw| (19)
X = X+A ©  hen
respectively, wheré is theM x 1 error vector and\ is the M x N _xH
error matrix whose norms are assumed to be bounded by some Fow) = X w4 llwl] (20)
known constraints and~, i.e., Proof: We first show that
léll<e,  [lAllz <~y (10) Fw) < IIXw|[ + 9wl (21)
where|| - || = is the Frobenius norm of a matrix. Note that the er- For any matrixA, [|A]| < [|Al|= (where|| - || is the matrix 2-

rorsé andA can occur because of a steering vector mismatch andnorm). Hence, for anyA, we have
data nonstationarity, respectively. Indeed, if the array data is non-
stationary at an interval aV samples, the interference-plus-noise
covariance matriXR,, becomes time-dependent and (5) can no
longer serve as a proper estimate of this matrix. The SINR expres-
sion must be then rewritten as

X" w + AT w]| X wl + (| A% wl]
X" wl + [ Allwll
X" wl + [|All#[wll

X wl| +llwll (22)

VAN VAN VAN VAN

SINR(t) = (11)

and (21) is proved.
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Next, we show that

Fow) > X wl| + 4wl (23)
Introduce
H
A YWW X
A = WX w] 9

Using the property| A.||% = trace{ AT A.}, itis easy to verify
that||A.|| = v. Therefore,

f(w) max_||(X + A)"w]|

IA[[F<vy

(X + A w]

X Hwrwl WH
lIwl[[ X wl|

Alwll

(X wl]
X" wl +~llwl]

2

HXHW +

HXHW + XHWH

(25)

and, with (25), equation (23) is proved. Comparing (21) and (23),
we finally prove Lemma 2. a

Assuming|wa| > ¢||w|| and applying Lemmas 1 and 2 to
(13), we can rewrite the latter problem as

min || X7 w| ++|lw| subjectto |w”a| > ¢|w|+1 (26)

Note that the assumptidw a| > ¢||w|| is relevant here because
the parametet should be small [9] while the arrawyhite noise
gain should be sufficient [11].

The constraint in (26) is still nonconvex due to the absolute

value operation on the left-hand side. To make it convex, note that

the cost function in (26) remains unchanged wheandergoes an
arbitrary phase rotation and, therefore, without any loss of gener-
ality, we can choosev such that

Re{w" a}

Sm{wa}

\Y%

@7)
(28)

where (27)-(28) should be used in (26) as additional constraints
[9]. Then, (26) can be equivalently rewritten as

min | X7 w|| + ~||w| subjectto w”a>¢e|lw|+1 (29)

Note that from the form of the constraint in (29) it follows that

4. SIMULATIONS

In our simulations, we assumed a uniform linear array (ULA) of
M = 20 omnidirectional sensors spaced haliravelength apart.
In both our examples, we assumed three interferers with plane
wavefronts and the interference-to-noise ratio (INR) equadtdB
in a single sensor and a desired signal with the signal-to-noise
ratio (SNR) equal to-5 dB in a single sensor. Without loss of
generality, the noise power is assumed to be equal to one in each
sensor and the desired signal is always present in the data snap-
shots. We assume that the presumed signal steering vector is the
planewaveimpinging from the angle of° relative to broadside,
while the actual signal steering vector is modeled as a distorted
copy of the presumed signal steering vector. Such a distortion
may occur, for example, becausewéve propagation effects in
an inhomogeneous medium. We assume independent-increment
phase distortions of the desired signavefront (see [14] and ref-
erences therein). Each of these phase distortions (which remain
fixed for all snapshots) is independently drawn from a Gaussian
random generator with the variance equad 1.

In the first example, we simulate the moving interferer case.
The interference angles change as

61(k) = 40° + 10° sin(k/15)
O2(k) = —40° — 15° cos(k/15)
Os(k) = —25° +10° cos(k/5)

respectively, wheré is the time index. Three methods have been
compared: our robust beamformer (29), the diagonally loaded sam-
ple matrix inversion (LSMI) beamformer [10], and the MT-based
beamformer [4]-[5]. To make the latter technique robust against
signal steering vector errors, an additional diagonal loading was
introduced. That is, the MT was applied to the diagonally loaded
sample covariance matrix rather than to the conventional sample
covariance matrix. The diagonal load 1j is used in the LSMI
beamformer and the diagonally loaded MT method. In our ro-
bust beamformer, the parameters= 2.7 andy = 180 are cho-
sen. These parameter values provide nearly optimal performance
of the methods tested. The parameters of the MT were optimized
to provide the best performance in this example as well. For all
the beamformers tested, the training data cell (i.e., the data sliding
window) is followed by the test cell (the so-called beamforming
snapshot). The sliding window of 50 snapshots is used in all ex-
amples. Fig. 1 shows the output SINR of the beamformers tested
versus the sliding window index. The optimal SINR curve is also
displayed in this figure. From Fig. 1, we see that the proposed
beamformer outperforms the LSMI technique and has quite similar
performance with the diagonally loaded MT beamformer. Interest-

the conditions (27)-(28) are satisfied automatically and, therefore,ingly, the relative performance of the proposed and MT beamform-
there is no need to add them as additional constraints to (29). An-ers is different in different parts of the plot. This means that the
other important observation is that the inequality constraint in (29) performance of postbeamforming signal detection algorithms can

can be replaced by the equality”a = ¢||w|| + 1. However,
we will use this constraint in its original inequality form which is
suitable for the SOC implementation of (29).

be substantially improved by using jointly the outputs of these two
beamformers instead of using only one of them.
In our second example, we study the SINR losses in the sta-

The problem (29) is already written in the form of a SOC tionary case which we have to accept as a price for the improved
program. It can be solved using computationally efficient interior robustness in the nonstationary case. In this example, we test all
point algorithms with the complexit@(1?), for example, using methods with the same parameters as in the first example. The
the SeDuMi MATLAB toolbox [13]. only difference between the first and second examples is that in the

It is worth noting that the SOC programming based beam- second example we model the interferers as sources with the fixed
former proposed in [8]-[9] is a particular case of (29), because anglesf; = 40°, §; = —40°, andf; = —25°. Fig. 2 displays
if we sety = 0 then (29) transforms to the SOC problem derived the output SINR of the beamformers tested versus the sliding win-
in [8]-[9]. dow index in this case. From this figure, we see that the proposed
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Fig. 1. Output SINR versus the sliding window index. First exam- Fig
ple.

[5]

beamformer has better performance than the LSMI and diagonally
loaded MT beamformers in this case.

(6]
5. CONCLUSIONS

A new approach to robust adaptive beamforming has been devel-
oped. Our beamformer is based on the optimization of the worst-7
case performance and is shown to provide joint robustness agains[t
signal steering vector errors and interference nonstationarity. The
parameters of our technique can be optimally chosen based OTS]
known levels of uncertainty in the signal steering vector and the
array data matrix. A convex optimization based formulation of the
underlying robust beamforming problem has been derived to com-
pute the beamformer weights. It uses SOC programming and can
be efficiently implemented by means of interior point algorithms.
Computer simulations have demonstrated the relationship be-

tween the performance of our algorithm and other popular robust
beamforming techniques.
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. 2. Output SINR versus the sliding window index. Second

example.
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