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ABSTRACT

Adaptive beamforming methods are known to degrade in the pres-
ence of both signal steering vector errors and interference nonsta-
tionarity. In this paper, we develop a new approach to adaptive
beamforming which is jointly-robust against these two phenom-
ena. Our approach is based on the optimization of the worst-case
beamforming performance. A computationally efficient convex
optimization based algorithm is proposed to compute the beam-
former weights. Computer simulations compare the performance
of our algorithm with other robust adaptive beamforming tech-
niques.

1. INTRODUCTION

The performance of traditional adaptive beamforming methods is
known to degrade severely if the array weights are not able to adapt
sufficiently fast to nonstationary interferers [1]-[5]. Such nonsta-
tionarity can be caused by interferer and antenna motion, antenna
vibration, as well as propagation channel variability. Moving in-
terferences represent an especially serious problem in the case of
large aperture arrays [3]. As a result, robust adaptive beamforming
techniques are required in these cases.

Recently, a few methods have been developed to improve the
performance of adaptive beamforming in nonstationary environ-
ments. Several authors exploited the idea of artificial broadening
of the beampattern nulls in unknown interfering directions. Two
different approaches have been independently developed using this
idea. The first one exploits the so-calleddata-dependent deriva-
tive constraints (DDCs) [2]-[3], whereas the second one is based
on matrix tapers (MTs) [4]-[5]. As shown in [6], the DDC and
MT approaches are closely related to each other. Unfortunately,
both of them aread hoc techniques and, hence, their performance
can be unpredictable in scenarios with rapidly moving interferers.
Moreover, the DDC and MT methods are applicable to interfering
sources with the planewavefronts only. Clearly, the assumption
of plane-wavefront interferers may become violated in practical
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scenarios withwavefront distortions resulting from environmental
inhomogeneities, multipath propagation, local scattering and fad-
ing, as well as near-field interference [7].

In this paper, we develop a new approach to robust adaptive
beamforming. Our approach providesjoint robustness against the
signal steering vector errors and nonstationary interferers with ar-
bitrary wavefronts to prevent signal self-nulling and ensure inter-
ference nulling, respectively. It represents a further generalization
of the method of [8] and [9] where only the robustness against sig-
nal steering vector errors has been considered. Similar to [8]-[9],
our beamformer is based on the concept of the worst-case per-
formance optimization but uses it in a more general form. The
parameters of our algorithm can be optimally chosen based on
known levels of uncertainty of the signal steering vector and the
array data matrix. We show that the weights of the proposed ro-
bust beamformer can be efficiently computed by means of a con-
vex optimization-based algorithm using second-order cone (SOC)
programming.

2. BACKGROUND

The output of a narrowband beamformer is given by

���� � �
�
���� (1)

where� is the time index,���� is the� � � complex vector of
the array data,� is the� � � complex weight vector,� is the
number of array sensors, and���� is the Hermitian transpose. The
snapshot vector can be modeled as

���� � ���� � ���� � ����

� ������ ���� � ���� (2)

where����, ����, and���� are the desired signal, interference,
and noise components, respectively. Here,���� is the signalwave-
form, and� is the signal steering vector (which is assumed to be
precisely known in this section). The weight vector can be found
from the maximum of the Signal-to-Interference-plus-Noise Ratio
(SINR)

���	 �
��� ��

�
���

�������
(3)
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where���� � 
������ � ���������� � ������� is the� ��
interference-plus-noise covariance matrix,��� is the signal power,
and
��� denotes the statistical expectation. It is easy to find the
solution for the weight vector by maintaining the so-calleddistor-
tionless response towards the desired signal and minimizing the
output interference-plus-noise power. Hence, the maximization of
(3) is equivalent to


��
�

�
�
����� ������� �� �

�
� � � (4)

In practice, the true interference-plus-noise covariance matrix
���� is unavailable. Therefore, this matrix is replaced in (4) by
the sample covariance matrix

�� �
�

�
��

� (5)

where� � ���� � � � ��� � is the� �� array data matrix and�
is the number of snapshots. After such a replacement, the problem
(4) can be rewritten as


��
�

���
�� ������� �� �

�
� � � (6)

From (6), the following well-known solution can be found for the
weight vector:

� � � ��� (7)

where� � ��� ����
���� is the norm constant which does not

affect the output SINR (3). The solution (7) is commonly referred
to as the sample matrix inverse (SMI) based minimum variance
distortionless response (MVDR) beamformer.

In [10]-[12] (also, see references therein), the diagonal loading
approach to robust beamforming has been studied. It has been
shown that this approach can greatly improve the robustness agai-
nst errors due to steering vector mismatch and small sample size.

3. ROBUST BEAMFORMING USING WORST-CASE
PERFORMANCE OPTIMIZATION

Let us now assume that both the signal steering vector and the data
matrix are known imprecisely and introduce the followingactual
(mismatched) steering vector and data matrix as

�� � �� Æ (8)
�� � ��	 (9)

respectively, whereÆ is the��� error vector and	 is the���
error matrix whose norms are assumed to be bounded by some
known constraints	 and
, i.e.,

�Æ� � 	 � �	�� � 
 (10)

where� � �� is the Frobenius norm of a matrix. Note that the er-
rorsÆ and	 can occur because of a steering vector mismatch and
data nonstationarity, respectively. Indeed, if the array data is non-
stationary at an interval of� samples, the interference-plus-noise
covariance matrix���� becomes time-dependent and (5) can no
longer serve as a proper estimate of this matrix. The SINR expres-
sion must be then rewritten as

���	��� �
��� ��

�����

����������
(11)

To provide the robustness against both the signal steering vec-
tor errors and data nonstationarity, we will obtain the beamformer
weights by solving the following optimization problem:


��
�


��
������

� ���
�� subject to ������ � � 	 �Æ� � 	 (12)

Note that the beamformer weights in (12) are obtained by means
of minimizing the worst-case output power (i.e., the power that
corresponds to the worst-case norm-bounded mismatch	) subject
to the distortionless response constraint which must be satisfied for
the steering vector with the worst-case norm-bounded errorÆ.

Equivalently, the problem (12) can be written as


��
�


��
������

���
��	

�
��

subject to 
��
�Æ���

������ Æ�� � � (13)

The following results can be proven for the constraint and the
objective function in (13).

Lemma 1, [8]: If

���
�� � 	��� (14)

then


��
�Æ���

������ Æ�� � ���
�� 
 	��� (15)

Proof: Applying the triangle and Cauchy-Schwarz inequalities
along with�Æ� � 	, we have

���
���

�
Æ� � ���

�� 
 ���
Æ�

� ���
�� 
 	��� (16)

It can be readily verified that the minimum of���
� � �

�
Æ� is

achieved with

Æ � 

�

���
	 ��� (17)


 � �����
�
�
�
�

�
(18)

and is equal to the right-hand side of (16) if (14) holds true.�
Lemma 2: Let

���� � 
��
������

���
� �	

�
�� (19)

Then

���� � ���
��� 
��� (20)

Proof: We first show that

���� � ���
��� 
��� (21)

For any matrix	, �	� � �	�� (where� � � is the matrix 2-
norm). Hence, for any	, we have

���
� �	

�
�� � ���

��� �	�
��

� ���
��� �	����

� ���
��� �	�����

� ���
��� 
��� (22)

and (21) is proved.
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Next, we show that

���� � ���
��� 
��� (23)

Introduce

	� �

���

�

��������
(24)

Using the property�	��
�
� � ������	�

� 	��, it is easy to verify
that�	��� � 
. Therefore,
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and, with (25), equation (23) is proved. Comparing (21) and (23),
we finally prove Lemma 2. �

Assuming���
�� � 	��� and applying Lemmas 1 and 2 to

(13), we can rewrite the latter problem as


��
�

���
��� 
��� subject to ���

�� � 	��� � � (26)

Note that the assumption���
�� � 	��� is relevant here because

the parameter	 should be small [9] while the arraywhite noise
gain should be sufficient [11].

The constraint in (26) is still nonconvex due to the absolute
value operation on the left-hand side. To make it convex, note that
the cost function in (26) remains unchanged when� undergoes an
arbitrary phase rotation and, therefore, without any loss of gener-
ality, we can choose� such that

�����
�� � � (27)

�����
�� � � (28)

where (27)-(28) should be used in (26) as additional constraints
[9]. Then, (26) can be equivalently rewritten as


��
�

���
�� � 
��� subject to �

�
� � 	���� � (29)

Note that from the form of the constraint in (29) it follows that
the conditions (27)-(28) are satisfied automatically and, therefore,
there is no need to add them as additional constraints to (29). An-
other important observation is that the inequality constraint in (29)
can be replaced by the equality��

� � 	��� � �. However,
we will use this constraint in its original inequality form which is
suitable for the SOC implementation of (29).

The problem (29) is already written in the form of a SOC
program. It can be solved using computationally efficient interior
point algorithms with the complexity�����, for example, using
the SeDuMi MATLAB toolbox [13].

It is worth noting that the SOC programming based beam-
former proposed in [8]-[9] is a particular case of (29), because
if we set
 � � then (29) transforms to the SOC problem derived
in [8]-[9].

4. SIMULATIONS

In our simulations, we assumed a uniform linear array (ULA) of
� �  � omnidirectional sensors spaced half awavelength apart.
In both our examples, we assumed three interferers with plane
wavefronts and the interference-to-noise ratio (INR) equal to!� dB
in a single sensor and a desired signal with the signal-to-noise
ratio (SNR) equal to
" dB in a single sensor. Without loss of
generality, the noise power is assumed to be equal to one in each
sensor and the desired signal is always present in the data snap-
shots. We assume that the presumed signal steering vector is the
planewaveimpinging from the angle of#Æ relative to broadside,
while the actual signal steering vector is modeled as a distorted
copy of the presumed signal steering vector. Such a distortion
may occur, for example, because ofwavepropagation effects in
an inhomogeneous medium. We assume independent-increment
phase distortions of the desired signalwavefront (see [14] and ref-
erences therein). Each of these phase distortions (which remain
fixed for all snapshots) is independently drawn from a Gaussian
random generator with the variance equal to���$.

In the first example, we simulate the moving interferer case.
The interference angles change as

����� � $�Æ � ��Æ �������"�

����� � 
$�Æ 
 �"Æ �������"�

����� � 
 "Æ � ��Æ ������"�

respectively, where� is the time index. Three methods have been
compared: our robust beamformer (29), the diagonally loaded sam-
ple matrix inversion (LSMI) beamformer [10], and the MT-based
beamformer [4]-[5]. To make the latter technique robust against
signal steering vector errors, an additional diagonal loading was
introduced. That is, the MT was applied to the diagonally loaded
sample covariance matrix rather than to the conventional sample
covariance matrix. The diagonal load of�" is used in the LSMI
beamformer and the diagonally loaded MT method. In our ro-
bust beamformer, the parameters	 �  �# and
 � �%� are cho-
sen. These parameter values provide nearly optimal performance
of the methods tested. The parameters of the MT were optimized
to provide the best performance in this example as well. For all
the beamformers tested, the training data cell (i.e., the data sliding
window) is followed by the test cell (the so-called beamforming
snapshot). The sliding window of 50 snapshots is used in all ex-
amples. Fig. 1 shows the output SINR of the beamformers tested
versus the sliding window index. The optimal SINR curve is also
displayed in this figure. From Fig. 1, we see that the proposed
beamformer outperforms the LSMI technique and has quite similar
performance with the diagonally loaded MT beamformer. Interest-
ingly, the relative performance of the proposed and MT beamform-
ers is different in different parts of the plot. This means that the
performance of postbeamforming signal detection algorithms can
be substantially improved by using jointly the outputs of these two
beamformers instead of using only one of them.

In our second example, we study the SINR losses in the sta-
tionary case which we have to accept as a price for the improved
robustness in the nonstationary case. In this example, we test all
methods with the same parameters as in the first example. The
only difference between the first and second examples is that in the
second example we model the interferers as sources with the fixed
angles�� � $�Æ, �� � 
$�Æ, and�� � 
 "Æ. Fig. 2 displays
the output SINR of the beamformers tested versus the sliding win-
dow index in this case. From this figure, we see that the proposed
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Fig. 1. Output SINR versus the sliding window index. First exam-
ple.

beamformer has better performance than the LSMI and diagonally
loaded MT beamformers in this case.

5. CONCLUSIONS

A new approach to robust adaptive beamforming has been devel-
oped. Our beamformer is based on the optimization of the worst-
case performance and is shown to provide joint robustness against
signal steering vector errors and interference nonstationarity. The
parameters of our technique can be optimally chosen based on
known levels of uncertainty in the signal steering vector and the
array data matrix. A convex optimization based formulation of the
underlying robust beamforming problem has been derived to com-
pute the beamformer weights. It uses SOC programming and can
be efficiently implemented by means of interior point algorithms.

Computer simulations have demonstrated the relationship be-
tween the performance of our algorithm and other popular robust
beamforming techniques.
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