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ABSTRACT

It is well known that the performance of adaptive
beamforming algorithm is degraded when the sample
support is short. The diagonal loading method is a
simple and efficient method for improving the
robustness of adaptive beamforming for such cases
Meanwhile, we are not aware of a formal approach to
determine an optimal diagonal value to date. In this
paper, we will propose one data dependent method for
the determination of the diagonal loading value. The
proposed method makes a connection between the
diagonal loading value and the estimation error of the
estimated covariance matrix. The larger the estimation
error, the larger the diagonal loading value is. Thus, the
proposed method adjusts the diagonal loading value
according to the array data. In addition, this method is
efficient in computation.

1. INTRODUCTION

It is well known that the performances of adaptive
beamforming algorithms are degraded when the sample
support is short. Some studies have shown that while
few samples are required for effective interference
suppression, the adaptive algorithm generates a beam
pattern with distorted main beam and high side lobes.
Kelly[1] showed that the expected value of side lobe

level is equal to: 
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of samples. This indicates that in order to achieve -40dB
average side lobes in the adaptive beam pattern, 10,000
samples should be used in estimating the covariance
matrix and the conventional beam shape must be below
the -40dB level. However, in practice, the requirement
for such long data lengths is often limited by stationary
conditions, which are often destroyed in cases of fast
moving interference or short signal duration. 

Carlson [2] proposed to improve the robustness of
adaptive beamforming for cases of small sample support
by diagonal loading technique, which is a simple and
efficient method. However, the diagonal loading value
determination has not been reported till now in spite that
certain upper and lower bounds have been proposed [3]
[4].

In this paper, we will introduce one data dependent
method for determining the diagonal loading value. The
loading value is related to the error in estimating the
covariance matrix. The larger the covariance matrix
estimation error is, the larger the diagonal loading value
will be. The data dependent method has the advantage
over the fixed diagonal loading value in that it adjusts
the diagonal loading value according to available data.
Therefore, the beamformer performance can be
maintained at a certain level even when the data quality
is changing.

 In order to implement this method, we also
proposed a simple approach for estimating the error in
the covariance matrix estimation. Thus the proposed
diagonal loading value determination method is data
dependent and efficient in computation. 

2. UPPER AND LOWER BOUNDS

Assume the received signal by an array of M sensors
is:

)()()( ttt nAsx +=  (1)
where A is the array manifold, n(t) is white noise with
variance 2

nσ  and s(t) is a vector of the signals emitted
by P independent sources with P<M. The covariance
matrix of the array output is:
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where 2
nσ is the noise power, 2

iσ  indicates the ith

signal power, A=[a1,…aP] and Λs is the signals'
covariance matrix which is a diagonal matrix in which
each diagonal element corresponds to one signal power.
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From this equation, the diagonal elements of the

covariance matrix have the same value: 2
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which is the sum of the signal and noise power, when
the array response is normalized: 1=ii a'a , i=1…P. 

In practice, the adaptive beamformming weights are
estimated using sensor outputs as:

1ˆ'' −= xxRaw β (3)

where a is the steering vector and xxR̂  is the estimated
covariance matrix of sensor output data which is
calculated by:
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and the scalar factor β is:
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As the data length is limited, the estimated covariance
matrix has errors and it can be rewritten as [7]:
     BRR xxxx ε+=ˆ                (6)
where Rxx is the true covariance matrix as given in (2),
B is a zero mean random matrix with unit variance and
ε is a positive constant which indicates the estimation
error of the estimated covariance matrix. Evidently, the
larger the estimation error is, the worse the beamformer
performance is.  

The diagonal loaded data covariance matrix is:
BIRR xx ελ ++= DLDL (7)

where λDL is the diagonal loading value to be
determined. Assume IRB xx DLλε +<< , the inverse
of the diagonal loaded covariance matrix can be
approximately expressed as: 
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From this equation, the term inside the first
brackets should be close to Rxx, thus the diagonal
loading value should be much smaller than the diagonal
element value of the covariance matrix Rxx:               

),( iiDL xxR<<λ (9)
where i can be any value from 1 to M because all the
diagonal values of Rxx are equal, where M is the number
of sensors. 

From equation (8), it is observed that the
beamformer performance degradation is caused by the
second term in the curly brackets. If the second term is
zero, the optimal beamforming will be obtained. Thus it
is desirable to have:

12 <
+ nDL σλ
ε (10)

 The diagonal value should satisfy:
εσλ >+ 2

nDL (11)

As 0,0 2 >> nDL σλ , it has:
ελ ≥DL (12)

Combining condition (9) and (12), we get a set of
upper and lower bounds for the diagonal loading value:

),( iiDL xxR<≤ λε (13)
From (10), if

ελ nDL = (14)
it has:
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In order to maintain deep nulls in the beam pattern,
the diagonal loading value should not be too large while
the side lobe reaches certain level. From (15), we
suggest to select n=1 or 2. 

In this method, it needs to know the estimation
error of the estimated covariance matrix. In next part,
we will propose a simple method to estimate it.   

3. DIAGONAL LOADING VALUE AND
ESTIMATED COVARIANCE MATRIX

Since it is impossible to obtain the true covariance
matrix in real application, we will estimate the
covariance matrix diagonal element value and the
covariance matrix estimation error from the estimated
covariance matrix.

 From expression of the true covariance matrix, it
is known that the diagonal elements have the same
value. But the estimated covariance matrix has errors in
each element.  From equation (6), the error matrix B is a
random matrix with zeros mean, thus, the diagonal
element value of the true covariance matrix can be
estimated by the average of the estimated covariance
matrix diagonal element values:

Mtraceii /)ˆ(),(~
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where M is the number of sensors. 
Using the same observation, the standard deviation

of the diagonal elements can be used as an indication of
the covariance matrix estimation error [6]:
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))ˆ(( xxRdiagStd=ε              (17)
where diag means the diagonal elements of the matrix,
Std means the standard deviation. Therefore, the
diagonal loading value should satisfy:

MtracediagStd DL /)ˆ())ˆ(( xxxx RR <≤ λ    (18)
The diagonal loading value can be selected as:

))ˆ(( xxRdiagStdDL =λ                      (19)
As the standard deviation of the diagonal elements of
the estimated covariance matrix is very easy to be
calculated, this method is efficient in computation. We
selected n=1 in (19) compared with (15). This selection
will be discussed in next part.

4. SIMULATION AND COMPARISON

Assume an interference of 30dB located at -25°
and a source of interest located at 0° with a SNR of -
6dB. A Chebyshev window of -35dB is used for
estimating the beamformer weights. The inter-element
distance is λ/2 in all the simulation. Fig.1 and 2 present
the beam patterns for the ideal Minimum Variance
Distortionless Response (MVDR), Sample Matrix
Inverse (SMI) and loaded SMI (LSMI) beamformers
with diagonal loading value calculated by (19) for two
different array and data lengths. Fig.1 is computed for a
linear array of 21 sensors with a data length of 42. The
results in Fig.2 are computed for a linear array of 15
sensors and a data length of 30.

These results show that the diagonal loading value
calculated by our proposed method can provide low side
lobe level and maintain the null as deep as about 25dB
below the side lobe level.

In order to investigate the performance of the
proposed methods, statistical analysis results based on
100 independent realizations are presented in Fig.3-
Fig.5. In these simulations, there are 3 interference
sources of equal power with INR 30dB and a signal of
interest is located at  -7° and has an SNR of -1.5dB. 

Fig.3 presents the output SINRs versus data length
for SMI, LSMIcst with a constant diagonal loading
value of 10dB above the noise and LSMIerror with the
diagonal loading value calculated by the proposed
methods. The number of sensors is 21. This result
shows that the proposed method performs better than
the constant diagonal value.

  Fig.4 is the output SINR versus the number of
sensors while the data length is twice the number of
sensors. This simulation shows that the SINR of the
optimal MVDR increases with the number of sensors,
while the SINRs of the SMI and the LSMI with constant

diagonal loading value decrease with the number of
sensors. The proposed diagonal loading value based
LSMI has the SINR increasing with the number of
sensors. This result shows the advantage of the data
dependent approach to determining the diagonal loading
value over the constant diagonal loading value.

In order to verify the selection of the diagonal
loading value, the output SINR versus n for

))ˆ(( xxRdiagnStdDL =λ  is presented in Fig.5. These
results show that n=1 is a suitable choice for arrays with
different number of sensors.    

5. CONCLUSION

In this paper, we have proposed an automatic data
dependent method to determine the diagonal loading
value for improving the performance of adaptive
beamforming with short sample supports. The method
requires an estimation of the covariance matrix
estimation error and we have proposed a simple
approach to achieve it, resulting in an efficient
algorithm.

Since the proposed method relates the diagonal
loading value with available data, the LSMI with the
proposed diagonal loading value performs better than
that using a fixed diagonal loading value in general. 
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               Fig.1 Beam pattern of MVDR, SMI and LSMI                               Fig.2 Beam pattern of MVDR, SMI and LSMI 
                   with 21 sensors                     with 15 sensors

     Fig.3 Output SINR versus data length                              Fig.4 Output SINR versus the number of sensors
                 (M=21, INR=30dB, SNR=-1.5dB)                                (Data length K=2M, INR=30dB, SNR=-1.5dB)

Fig.5 Output SINR versus the diagonal loading values (INR=30dB, SNR=-1.5dB, Data length K=2M)
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