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ABSTRACT

Whenever the knowledge of the array steering vector is imprecise
(as is often the case in practice), the performance of the Capon
beamformer may become worse than that of the standard beam-
former. Diagonal loading (including its extended versions) has
been a popular approach to improve the robustness of the Capon
beamformer. In this paper we show that a natural extension of the
Capon beamformer to the case of uncertain steering vectors also
belongs to the class of diagonal loading approaches but the amount
of diagonal loading can be precisely calculated based on the un-
certainty set of the steering vector. The proposed robust Capon
beamformer can be efficiently computed at a comparable cost with
that of the standard Capon beamformer. Its excellent performance
is demonstrated via a number of numerical examples.

1. INTRODUCTION

The Capon beamformer has better resolution and much better in-
terference rejection capability than the standard (data-independent)
beamformer, provided that the array steering vector correspond-
ing to the signal of interest (SOI) is accurately known. However,
in practical applications, the knowledge of the SOI steering vec-
tor is often imprecise due to the differences between the assumed
signal arrival angle and the true arrival angle or between the as-
sumed array response and the true array response (array calibration
errors). Whenever this happens, the performance of the Capon
beamformer may become worse than that of the standard beam-
formers. To account for the array steering vector errors, additional
linear constraints, including point and derivative constraints, can
be imposed to improve the robustness of the Capon beamformer.
However, these constraints are not explicitly related to the un-
certainty of the array steering vector. Moreover, for every addi-
tional linear constraint imposed, the beamformer loses one degree
of freedom (DOF) for interference suppression. Diagonal loading
(including its extended versions) has been a popular approach to
improve the robustness of the Capon beamformer. However, for
most of these methods, it is not clear how to choose the diagonal
loading level based on the uncertainty of the array steering vector.

Recently some methods with a clear theoretical background
have been proposed, see e.g., [1, 2, 3, 4], which, unlike the early
methods, make explicit use of an uncertainty set of the array steer-
ing vector. In [3], a polyhedron is used to describe the uncertainty
set, whereas spherical and ellipsoidal (including flat ellipsoidal)
uncertainty sets are considered in [1, 2, 4]. The robust Capon
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beamforming approaches presented in [1, 2] couple the formula-
tion of the standard Capon beamformer (SCB) in [5] with a spher-
ical or ellipsoidal uncertainty set of the array steering vector. Our
RCB approach is different from those in [1, 2] in that we couple
the formulation of SCB in [6] with an ellipsoidal uncertainty set.
In addition, our RCB gives a simple way of eliminating the scaling
ambiguity when estimating the power of the desired signal while
the approaches in [1, 2] did not consider the scaling ambiguity
problem.

In this paper we show how to efficiently compute our robust
Capon beamformer by using the Lagrange multiplier methodol-
ogy. It turns out that our RCB also belongs to the class of diagonal
loading approaches and that the amount of diagonal loading can
be precisely calculated based on the ellipsoidal uncertainty set of
the array steering vector. Numerical examples are presented to
demonstrate the effectiveness of our RCB for SOI power estima-
tion.

2. PROBLEM FORMULATION
Consider an array comprising M sensors and let R. denote the the-
oretical covariance matrix of the array output vector. We assume
that R > 0 (positive definite) has the following form:

K
R = ogaoaj + Zoiakai +Q @
k=1

where (o3, {o7 }/=,) are the powers of the (K + 1) uncorrelated
signals impinging on the array, (ao, {ax} ;) are the so-called
steering vectors that are functions of the location parameters of
the sources emitting the signals (e.g., their directions of arrival
(DOAS)), (+)* denotes the conjugate transpose, and Q is the noise
covariance matrix. In what follows we assume that the first term
in (1) corresponds to the SOI and the remaining rank-one terms
{oiara;}i_, to K interferences. To avoid ambiguities, we as-
sume that

llaoll” = M @
where || - || denotes the Euclidean norm. In practical applications,
R is replaced by the sample covariance matrix R, where
1 N
R= N ngl XnXo, €))

with IV denoting the number of snapshots and x,, representing the
nth snapshot.

The robust beamforming problem we will deal with in this pa-
per can now be briefly stated as follows: extend the Capon beam-
former so as to be able to accurately determine the power of SOI
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even when only an imprecise knowledge of its steering vector, ao,
is available. More specifically, we assume that the only knowledge
we have about ag is that it belongs to the following uncertainty el-
lipsoid (see Section 4 for the flat ellipsoid case):

[ap — a]” c! [ap —a] <1 (4)

where a and C (a positive definite matrix) are given.

3. ROBUST CAPON BEAMFORMING
The common formulation of the beamforming problem that leads
to the SCB is as follows (see, e.g., [5, 7]).
(a) Determine the M x 1 vector wg that is the solution to the
following linearly constrained quadratic problem:

min w*Rw subjectto w*ap =1 (5)
(b) Use wiRwy as an estimate of o3.
The solution to (5) is easily derived:
R7180
== 20 6
wo ajR-1ap ©)

Using (6) in Step (b) above yields the following estimate of o3:

.2 1
70 = ajR~1ag Q)

To derive our robust Capon beamforming approach, we use the
reformulation of the Capon beamforming problem in [6] (also see
[4]) that we motivate below in a simple way to which we append
the uncertainty set in (4). Proceeding in this way we directly obtain
a robust estimate of o2, without any intermediate calculation of a

vector w [4]:

2
maxo

o<,a

subject to

R —o’aa” >0
(a—a)*C'(a—a)<1 (8)
(where a and C are given).
For any given a, the solution 3 to (8) is indeed given by the

counterpart of (7) (see [4]). Hence (8) can be reduced to the fol-
lowing problem

mina*R™'a subjectto (a—a)*C ' (a—a)<1 (9)

Without loss of generality, we will consider solving (9) for C =
el, i.e., solving the following quadratic optimization problem un-
der a spherical constraint:

mina*R™'a subjectto ||a—a|®> <e (10)

Note that if C is not a scaled identity matrix, we can convert the
problem into the same form as (10).
To exclude the trivial solution a = 0 to (10), we assume that

lal® > e (11)

Because the solution to (10) (under (11)) will evidently occur on
the boundary of the constraint set, we can re-formulate (10) as the
following quadratic problem with a quadratic equality constraint:

mina*R™'a subjectto |la—a|’ =« (12)

This problem can be solved by using the Lagrange multiplier method-
ology, which is based on the function:

f:a*R71a+)\(||a—5||2—e) (13)

where X > 0 is the Lagrange multiplier [8]. Differentiation of (13)
with respect to a gives the optimal solution ao:

R ao—}-)\(o—a)—O (14)
The above equation yields

do = (R; +I>_ a (15)
= a—(I+)MR) 'a (16)

where we have used the matrix inversion lemma to obtain the sec-
ond equality. The Lagrange multiplier A > 0 is obtained as the
solution to the constraint equation:

g\ = ||I+,\R)‘ || 17)

Let
R = UAU" (18)

where the columns of U contain the eigenvectors of R and the
diagonal elements of the diagonal matrix A, Ay > Ay > --- >
A, are the corresponding eigenvalues. Let

z=U"a (19)

and let z,, denote the mth element of z. Then (17) can be written

as
M

_ l2m[*
g(\) = m,Z:l RESYSTiaL (20)

Note that g(\) is a monotonically decreasing function of A > 0.
We can use, e.g., Newton’s method, to determine the Lagrange
multiplier A from (20), and &g is then determined by using (16)
and &3 by using (7) with ao replaced by ao. Hence the major
computational demand of our RCB comes from the eigendecom-
position of the Hermitian matrix R, which requires O(M?3) flops.
Therefore, the computational complexity of our RCB is compara-
ble to that of the SCB.

Next observe that both the power and the steering vector of
SOl are treated as unknowns in our robust Capon beamforming
formulation (see (8)), and hence that there is a “scaling ambi-
guity” in the SOI covariance term in the sense that (0%, a) and
(0% /a,a/?a) (for any a > 0) give the same term o2aa*. To
eliminate this ambiguity, we use the knowledge that ||ao||> = M
(see (2)) and hence estimate o3 as [4]

50 = &0llal)® /M (21)

The numerical examples in [4] confirm that 33
accurate estimate of o2 than &2

Unlike our approach, the approaches of [1] and [2] do not pro-
vide any direct estimate ao. Hence they do not dispose of a simple
way (such as (21)) to eliminate the scaling ambiguity of the SOI
power estimation that is likely a problem for all robust beamform-
ing approaches (this problem was in fact ignored in both [1] and
[2]). Note that SOI power estimation is the main goal in many
applications including radar, sonar, and acoustic imaging.

is a (much) more
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In other applications, such as communications, the focus is on
SOI waveform estimation. Let so(n) denote the waveform of the
SOI. Then once we have estimated the SOI steering vector with
our RCB, so(n) can be estimated like in the SCB as follows:

S0(n) = Woxn (22)
where &g in (15) is used to replace agp in (6) to obtain wo:

R . R 'a
Wwo = m (23)
1 —1 _
— (R __'-1)\1) a — (24)
a*(R++I)" R(R+3I)" a

Note that our robust Capon weight vector has the form of diagonal
loading except for the real-valued scaling factor in the denominator
of (24). However, the scaling factor is not really important since
the quality of the SOI waveform estimate is typically expressed by
the signal-to-interference-plus-noise ratio (SINR)

o3| Wiaol®

SINR = —
Wi (LI, otara; + Q) wo

(25)

which is independent of the scaling of the weight vector.

We remark that the discussions above indicate that our robust
Capon beamforming approach belongs to the class of (extended)
diagonally loaded Capon beamforming approaches. However, un-
like earlier approaches, our approach can be used to determine ex-
actly the optimal amount of diagonal loading needed for a given
ellipsoidal uncertainty set of the steering vector, at a very modest
computational cost.

Our approach is different from the recent RCB approaches in
[1, 2]. The latter approaches extended Step (a) of SCB to take into
account the fact that when there is uncertainty in ag, the constraint
on w*ag in (6) should be replaced with a constraint on w*a for
any vector a in the uncertainty set (the constraints on w*a used
in [1] and [2] are different from one another); then the so-obtained
w is used in w*Rw to derive an estimate of ¢3, as in Step (b)
of SCB. Despite the apparent differences in formulation, we can
prove that our RCB gives the same weight vector as the RCBs
presented in [1, 2], yet our RCB is computationally more efficient.
We can also show that, although this aspect was ignored in [1, 2],
the RCBs presented in [1, 2] can also be modified to eliminate the
scaling ambiguity problem that occurs when estimating the SOI
power o3.

4. FLAT ELLIPSOIDAL UNCERTAINTY SET
When the uncertainty set for a is a flat ellipsoid, as is considered
in [2, 9] to make the uncertainty set as tight as possible (assuming
that the available a priori information allows that), (8) becomes

maxo’  subject to R—oc?aa” >0

0'2,3

a=Bu+a, |ju<1 (26)
where B isan M x L matrix (L < M) with full column rank
and uis an L x 1 vector. (When L = M, (26) becomes (4)
with C = BB™.) The RCB optimization problem in (26) can be
reduced to (see (9)):

min(Bu + a)*R™'(Bu+a) subjectto |ul| <1 (27)

Note that

(Bu+a)*R™'(Bu+a) =
u"B'R'Bu+a'R'Bu+u'B'R'a+a"R'a (28)
Let 3
R=B'R'B>0 (29)
and
a=B'R™'a (30)
Using (28)-(30) in (27) gives

minu*Ru +3"u+u*a subjectto [ul| <1  (31)

The Lagrange multiplier methodology is based on the function
[10] 5 §
f=uRu+au+u'a+ A(u'u—1) (32)
where X is the Lagrange multiplier [8]. Differentiation of (32) with
respect to u gives

+Ai=0 (33)

Da

Ra+
which yields L
a=—-(R+AD7'a (34)
where X > 0 can be determined similar to Section 3. Then X is

used in (34) to obtain the 1 that solves (31) and 11 is next used to
obtain the optimal solution to (26) as:

4,=Bi+a (35)

Hence, under the flat ellipsoidal constraint the complexity of
our RCB is also O(M?) flops, which is on the same order as for
SCB and is mainly due to computing R~! and the eigendecom-
position of R. If L <« M, then the complexity is mainly due
to computing R™". Note that here we only need O(L?) flops to
compute A while the approach in [2] requires O(M*®) flops (and
L < M). Our approach is also simpler from a conceptual stand-
point than that of [2].

5. NUMERICAL EXAMPLES
Our main motivation for studying the RCB problem was an acous-
tic imaging application in which the goal was to estimate the SOI
power in the presence of strong interferences as well as some un-
certainty in the SOI steering vector. We assume a uniform linear
array with M = 10 sensors and half-wavelength sensor spacing.
We assume a spatially white Gaussian noise whose covariance ma-
trix is given by Q = I. We assume that the steering vector uncer-
tainty is due to the uncertainty in the SOI’s direction of arrival o,
which we assume to be 8y + A. We assume that a(6y) belongs to
the spherical uncertainty set
lla(8o) —a|> < e a=a(fo+ A) (36)
where e is a user parameter. Let eo = ||a(fo) — al|>. Then choos-
ing e = o gives the smallest spherical set that includes a(6o).
We examine the effects of the spherical and flat ellipsoidal
constraints on SOI power estimation in the presence of several
strong interferences. We will vary the number of interferences
from K = 1to K = 8. The power of SOl is ¢ = 20 dB and the
interference powers are o7 = .- = 0% = 40 dB. The SOI and
interference directions of arrival are 8 = 10°,0; = —75°,0, =
—60°,03 = —45°,6, = —30°,05 = —10°,06 = 25°,07 =
35°, 0s = 50°. We assume that there is a look direction mismatch
corresponding to A = 2° and accordingly ep = 3.1349. Figure 1
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Fig. 1. 52 (SCB), 62 (RCB with flat ellipsoidal constraint with
L = 2), and éro (RCB with spherical constraint), based on R,
versus the number of interferences K when (a) § = 1.8° and (b)
é = 2.4°. The true SOI power is 20 dB and o = 3.1349 (corre-
sponding to A = 2°).

shows the SOI power estimates, as a function of the number of in-
terferences K, obtained by using SCB, RCB (with flat ellipsoidal
constraint), and the more conservative RCB (with spherical con-
straint) all based on the theoretical array covariance matrix R. For
RCB with flat ellipsoidal constraint, we let B contain two columns
with the first column being a(6o + A) —a(6o+ A —§) and the sec-
ond column being a(fo + A) —a(6o + A + ). Note that choosing
6 = A = 2° gives the smallest flat ellipsoid that this B can offer to
include a(fo). However, we do not know the exact look direction
mismatch in practice. We choose 6 = 1.8° and § = 2.4° in Fig-
ures 1(a) and 1(b), respectively. For RCB with spherical constraint,
we choose ¢ to be the larger of ||a(fo + A) — a(fo + A — 3)||?
and ||a(do + A) — a(fo + A + 8)||>. Note that RCB with flat
ellipsoidal constraint and RCB with spherical constraint perform
similarly when K is small. However, the former is more accurate
than the latter for large K. Figure 2 shows the SOI power estimates
versus the number of snapshots NV for K = 1 and K = 8 when
the sample covariance matrix R is used in lieu of the theoretical
array covariance matrix in the beamformers and the average power
estimates from 100 Monte-Carlo simulations are given. Note that
for small K, RCB with spherical constraint converges faster than
RCB with flat ellipsoidal constraint as NV increases, while the lat-
ter converges faster than SCB. For large K, however, the conver-
gence speeds of RCB with flat ellipsoidal constraint and RCB with
spherical constraint are about the same as that of SCB; after con-
vergence, the most accurate power estimate is provided by RCB
with flat ellipsoidal constraint.

6. CONCLUSIONS

We have shown how to obtain a robust Capon beamformer (RCB)
based on an ellipsoidal (including flat ellipsoidal) uncertainty set
of the array steering vector, at a comparable computational cost
with that associated with SCB. The data-adaptive RCB is much
less sensitive to steering vector mismatches than the standard Capon
beamformer (SCB) and yet it can retain the appealing properties
of SCB including better resolution and much better interference
rejection capability than the standard (data-independent) beam-
former. We have shown that the RCB belongs to the class of di-
agonal loading approaches but the amount of diagonal loading can
be precisely calculated based on the uncertainty set of the steer-
ing vector. The excellent performance of our RCB for SOI power
estimation has been demonstrated via a number of numerical ex-
amples.
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Fig. 2. Comparison of the SOI power estimates, versus N, ob-
tained using SCB, RCB (with flat ellipsoidal constraint) and RCB
(with spherical constraint), all with R, when § = 2.4° for @)
K = 1and (b) K = 8. The true SOI power is 20 dB and
€0 = 3.1349 (corresponding to A = 2°).

7. REFERENCES

[1] S. A. Vorobyov, A. B. Gershman, and Z.-Q. Luo, “Robust
adaptive beamforming using worst-case performance opti-
mization,” |EEE Transactions on Sgnal Processing, 2001.
Submitted. (Also in ICASSP Proceedings 2002).

[2] R. G. Lorenz and S. P. Boyd, “Robust minimum variance
beamforming,” IEEE Transactions on Sgnal Processing,
2001. Submitted.

[3] S. Q. Wu and J. Y. Zhang, “A new robust beamforming
method with antennae calibration errors,” |IEEE Wreless
Communications and Networ king Conference, New Orleans,
LA, USA, vol. 2, pp. 869-872, September 1999.

[4] P. Stoica, Z. Wang, and J. Li, “Robust Capon beamforming,”
IEEE Sgnal Processing Letters, 2002. To appear.

[5] J. Capon, “High resolution frequency-wavenumber spectrum
analysis,” Proceedings of the |EEE, vol. 57, pp. 1408-1418,
August 19609.

[6] T.L.Marzetta, “A new interpretation for Capon’s maximum
likelihood method of frequency-wavenumber spectrum esti-
mation,” IEEE Transactions on Acoustics, Speech, and Sg-
nal Processing, vol. 31, pp. 445-449, April 1983.

[7] P. Stoicaand R. L. Moses, Introduction to Spectral Analysis.
Englewood Cliffs, NJ: Prentice-Hall, 1997.

[8] A.V.Fiaccoand G. P. McCormick, Nonlinear Programming:
Sequential Unconstrained Minimization Techniques. New
York, NY: John Wiley & Sons Inc., 1968.

[9] R. G. Lorenz and S. P. Boyd, “Robust beamforming in GPS
arrays,” Proceedings of the Institute of Navigation, National
Technical Meeting, January 2002.

[10] D. C. Sorensen, “Newton’s method with a model trust re-
gion modification,” SAM Journal on Numerical Analysis,
vol. 19(2), pp. 409-426, April 1982.

V -340




