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ABSTRACT

The performance of adaptive beamforming methods may degrade
in the presence of even dlight mismatches between the actual and
presumed array responses to the desired signal. This paper ad-
dresses the problem of robust adaptive beamforming in the pres-
ence of unknown arbitrary (yet norm-bounded) mismatches of such

type aswell asinterference-plus-noise covariance matrix mismatch.

Our approach is devel oped for the case of an arbitrary dimension of
the signal subspace and, therefore, it can be applied to both rank-
one and higher-rank signal models. The proposed beamformer is
based on the optimization of the worst-case signal-to-interference-
plus-noise ratio (SINR). The obtained closed-form solution com-
bines two different types of diagonal loading (DL) applied to the
signal and data covariance matrices. An efficient on-line imple-
mentation of our beamformer is developed. Simulations validate
substantial performance improvements relative to other popular
adaptive beamforming techniques.

1. INTRODUCTION

The robustness of adaptive beamformers is known to depend es-
sentially on the availability of signal-free data snapshots [1]-[3].
For the signal-free data case, many powerful and computationally
efficient algorithms have been proposed [4]. However, in severa
applications such as wireless communications, microphone array
speech processing, medical imaging, radio astronomy, etc., the
signal-free snapshots are unavailable. In such applications, adap-
tive beamforming methods become very sensitive to mismatches
of the array response to the desired signal. This phenomenon is
sometimes referred to as the signal self-nulling.  Similar types
of degradation can take place when the signal array response is
known exactly but the sample sizeis small [1], [3].

Thereare several efficient approachesto robust adaptive beam-
forming (see [1]-[3] and references therein) but most of them use
ad hoc ways to improve the robustness. Recently, a more theoreti-
cally motivated approach has been developed in [5]-[6] that explic-
itly models an arbitrary (but bounded in norm) steering vector mis-
match and uses worst-case performance optimization to improve
the robustness of the minimum variance distortionless response
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(MVDR) beamformer. This method makes use of the second-order
cone (SOC) programming based convex optimization approach to
compute beamformer weights although it can be interpreted as a
DL technique whose DL factor is optimally matched to the level
of uncertainty of the signal steering vector. A related approach
is reported in [7] where another DL-based iterative algorithm is
considered as an alternative to the SOC programming approach.

A serious shortcoming of the above-mentioned robust tech-
niques is that they are only applicable to the point (rank-one) sig-
nal model. In this paper, we propose a new robust approach to
adaptive beamforming applicable to the general-rank signal model
case (where the dimension of the signal subspace is not neces-
sarily equal to one but can be arbitrary). The proposed approach
is based on the optimization of the worst-case SINR and yields a
closed-form solution which combines two types of DL applied to
the signal and the array data covariance matrices.

An efficient on-line implementation of our beamformer is de-
veloped.

2. BACKGROUND

The output of a narrowband beamformer is given by
y(k) = w'x(k) &)

where k is the time index, x(k) isthe M x 1 complex vector of
array observations, w isthe M x 1 complex vector of beamformer
weights, M is the number of array sensors, and (-)7 and (-)”
are the transpose and Hermitian transpose, respectively. The data
snapshot vector is given by

x(k) = s(k) + i(k) + n(k) @)

where s(k), i(k), and n(k) are the statistically independent com-
ponents of the desired signal, interference, and sensor noise, re-
spectively. The optimal weight vector can be obtained through
maximizing the signal-to-interference-plus-noise ratio (SINR) [4]

wilRw

SINR =

©)
where R, = E {s(k)s” (k) } and Ri1n = E{(i(k) + n(k))(i(k)
+n(k))"} arethe M x M signal and interference-plus-noise co-
variance matrices, respectively, and E{-} denotes the statistical ex-

pectation. In the general case, the rank of R can be arbitrary, i.e.,
1 < rank{Rs} < M. In the specific point signal source case,
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s(k) = s(k)as and Ry = o?azal’, where s(k) is the zero-mean
signal waveform, o2 = E{|s(k)|?} isthe variance of s(k), and as
is the source steering vector/spatial signature.

In many practical situations rank{Rs} > 1 with typical ex-
amples being scenarios with incoherently scattered (spatialy spr-
ead) signal sources or signals with random fluctuations of wave-
fronts (multiplicative noise) [8], [9]. In the general-rank case, the
optimal solution for the weight vector maximizing the SINR in (3)
isgiven by [3], [10]

Wopt — /P{Rl_JrlnRS} (4)

where P{-} isthe operator yielding the principal eigenvector of a
matrix.

In the point signal source case, (4) is reduced to wopy =
P{R;} a;al’} where we make use of the fact that in this par-
ticular case R; = o2azal’. Obviously, the principal eigenvector
of the matrix R, a;al’ isaR[} a; where a is an arbitrary con-
stant which does not affect the output SINR. Hence, (4) is reduced
to wope = R; a, which is the classic solution for the weight
vector of the optimal beamformer in the rank-one signal case [4].

In practical situations, the R, isunavailable but can be esti-
mated from the data snapshots. Therefore, the sample covariance

matrix
1 & -
R=5> x(mx"(n) ()

isused instead of Ri.n, [4]. Thisyields the generalized version of
the well-known sample matrix inverse (SM1) beamformer [4]

WsMI = P{f{_le} (6)

3. ANEW APPROACH TO ROBUST BEAMFORMING

In practical situations, both the signal and interference-plus-noise
covariance matrices are known with some errors. Indeed, there is
always a certain mismatch between the presumed signal_covari-
ance matrix Rs and the actual signal covariance matrix Rs. For
example, in cellular communications, the signal covariance matrix
isusually estimated at the base station antenna array in the uplink
mode for each mobile user during the interval when this particular
user transmits its training sequence. However, such an estimate is
aways subject to some errors because of multiuser interference,
user mobility, time variability of the communication channel, etc.

Furthermore, there is always a certain mismatch between the
presumed and actual interference-plus-noise covariance matrices
Ritn and Ri4n, respectively. These mismatches are caused by the
presence of the desired signal in data snapshots, interferer mobil-
ity, channel variability, and small sample size effects. Theerrorsin
the signal and the interference-plus-noise covariance matrices can
be modeled as

R, =

Ri+n =

Rs + A (7)
Ri+n + AZ (8)
respectively, where A; and A, are the corresponding unknown

matrix mismatches. Then, the equation (3) for the output SINR of
an adaptive array has to be rewritten as

wHst

wHR oW

_ wH(RS + Aq)w
T wH (Rign + A2)w

SINR = ©9)

We assume that the norms of the mismatch matrices A; and A»
can be bounded by some known constants [5]

Al <e,  [[Aq]l <~y (10)

To provide robustness against possible norm-bounded mismatches
(10), we propose to obtain the beamformer weight vector by means
of maximizing the worst-case output SINR, i.e., by means of solv-
ing the following optimization problem:

w’(Rs + Ap)w

i A < Asll <
mvexArf{lgsz(Ri+n+A2)w V [|AL] <e, [[Azf <~y
(11)
The problem (11) can be rewritten as
min w” (Rs + A1)w
lA1l<e
max _ (12)
w max W (Ritn + A2)w
1Asll<~y

We will make use of the following lemma.
Lemma 1: For any M x 1 vector w, M x M Hermitian matrix
C,and scaar § > 0,

. H H

min w (C+A)w = w (C—46)w 13
min w(C+A) (C-dhw (1
max w' (C+ A)w = w’(C+dD)w (14)
lall<é

where I istheidentity matrix.
Proof: Let us consider the following problems

min w’(C+ A)w subjectto ||A||<§  (15)

mAawa(C—i—A)w subject to ||A|| <&  (16)

From the linearity of the objective function w’ (C + A)w with
respect to A, it follows that the inequality constraint ||A|| < 6 in
(15) and (16) can be replaced by the equality constraint ||A|| = 4.
Therefore, the solutions to (15) and (16) can be obtained using the
Lagrange multiplier method, by means of minimizing/maximizing
the function

LA =w? (C+ A)w = A(||A]> - 67) (17)

Equating the gradient 9L(A, X)/0A to zero and taking into ac-
count the constraint || A|| = &, we obtain A = F6 ww’ /||w||?.
Inserting the latter equation into the objective function w' (C +
A)w yieldsw’ (CF46I)w. Sinced ispositive, w (C—dI)w <
w'(C + 6I)w and this proves equations (13) and (14). O
Using this lemma, the optimization problem (12) becomes
wi(Rs — el)w

max W (Ritn + D)W (18)

The solution to (18) can be expressed in a closed-form
Wrob = P{(Ritn +7I) " (Rs — eI)} (19

Note that if ¢ is larger than the maximal eigenvalue of R, the
matrix Rs—eI becomes negative definite and the non-negativeness
constraint on the worst-case signal power is violated. Therefore,
the parameter £ smaller than the maximal eigenvalue of Rs must
be chosen.

In practice, the matrix R isunavailable and the sample co-
variance matrix R should be used instead of Ri, in (18). The
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solution to such modified problem yields a more practical (sam-
ple) version of the robust beamformer (19)

Wiob = P{(R +7I) 7 (Rs — eI)} (20)

From (20) it is clear that the worst-case performance optimization
approach leads to a new DL-based beamformer. Indeed, both the
negative and positive types of DL are combined in (20), where the
negative loading is applied to the presumed covariance matrix of
the desired signal, while the positive loading is applied to the sam-
ple data covariance matrix. The optimal values of the DL factors
~ and e are obtained based on known levels of uncertainty of the
signal and interference-plus-noise covariance matrices.

In the point source case, assuming without loss of generality
that o2 = 1 (i.e, absorbing o2 in ), we have that (20) can be
rewritten as

Wioh = P{(R +71) "' (asa; — D)} (1)

4. ON-LINE IMPLEMENTATION

In the previous section, the robust algorithm (20) isformulated ina
form suitable for the batch processing mode. In practical systems,
on-line implementations are often required where the weight vec-
tor must be updated with each new data snapshot. In this section, a
computationally efficient on-line implementation of the algorithm
(20) is developed.

We will make use of the following lemma.

Lemma 2: For arbitrary M x M Hermitian matrix X and ar-
bitrary M x M full-rank Hermitian matrix Y the following rela-
tionship holds

P{XY} =Y '"?P{Y'/’XY'/?}. (22)
Proof: Write the characteristic equation for XY as
XYu; = \u; (23)

where {\;}72, and {u;}}Z, are the eigenvalues and correspond-
ing eigenvectors of X'Y. Multiplying this equation by Y'/? gives
YV2XYYAYY2 4 = A Y (24)
7 7 7
Y

which is the characteristic equation for Y/2XY!/2:
Y'?XY' v = Mivi (25)

where the eigenvectors of the matrices XY and Y'/2XY'/? are
related asv; = Y'/?u; foral i = 1,2,..., M. Applying this
result to the principal eigenvectors of XY and Y'/2XY!/2, we
obtain (22). |

Applying thislemmato the beamformer (20) can we rewrite it
as

Wb = (Rs —el)T'/2P{G™"}
= (R. —eI) 2 M{G} (26)

where M{-} is the operator yielding the minor eigenvector of a
matrix [10] and

G 2 (Ri—e)"?*(R4+DRs —cI)™2 (27)

It is worth noting that even if Rs is singular or ill-conditioned,
the matrix Rs — I can be made full-rank (well-conditioned) by a
proper choice of the parameter . Furthermore, for any nonzero ¢,
rank{Rs — eI} = M almost surely.

Let us consider the case of rectangular sliding window of the
length V where the update of the matrix R 2 R + ~1 in the nth
step can be computed as

R(n) = R(n—1) + %x(n)xH(n)

— ix(n—N)xH(n—N) (28)
N
Notethat (28) represents the so-called rank-2 update. The diagonal
load should be added in the initialization step of (28), that is, we
initialize the matrix R with ~I. Using (28), we can rewrite the
update of the matrix (27) as

G(n) = G(n—1)+x(n)x"(n)

— %(n—N)x"(n—N) (29)
where the transformed data snapshots are defined asx(n) = j—ﬁ
(Rs — eI)~'/?x(n) and, according to (27), (Rs — 1)~ should
be chosen to initialize the matrix G.

According to equations (26) and (29), the on-line algorithm
for updating the weight vector w,., involves updating the matrix
G and tracking the minor eigenvector of this matrix. An aterna-
tive way is to make use of the matrix inversion lemmato find the
update of the matrix G~' and then track the principal eigenvec-
tor of this matrix. Any of subspace tracking algorithms available
in the literature can be used for this purpose. Note that the com-
plexities of the existing subspace tracking techniques lie between
O(M) and O(M?) per step. Therefore, the total complexities of
the on-line implementations developed are given by O(M?) per
step because regardless of the complexity of the subspace tracking
algorithm used, O (3?) additional operations per step are required
to update the weight vector (26).

5. SSIMULATIONS

We assume a uniform linear array (ULA) of p = 20 omnidirec-
tional sensors spaced half-wavelength apart. There is one desired
source and one interferer. The desired signal is always present in
the data samples and the interference-to-noise ratio (INR) is equal
to 20 dB. We compare the averaged performances of the bench-
mark SMI agorithm (which corresponds to the ideal case when
R in (6) is known exactly and is included in our simulations for
comparison reasons only), the SMI agorithm (6), the diagonally
loaded SM1 (LSMI) agorithm (see [2]-[3] and references therein)
with the DL factor v = 3002 (Where o is the noise variance)
and the proposed robust algorithm (20) with the DL parameters
v = 300% and e = 9. Note that the presumed matrix Rs in (20)
is normed so that the signal power in a single sensor is equal to
one. Furthermore, note that these values of v and ¢ are nearly op-
timal for each algorithm. Additionally, the optimal SINR curve is
displayed.

We assume that the desired signal and interferer are locally
incoherently scattered sources but the shape of the signal angular
power density is known with a substantial error. Following the re-
sults of the experimental work [8], the actual signal angular power
density is assumed to be a Laplacian function which is distorted
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Fig. 1. Actual and presumed signal angular power densities.
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Fig. 2. Output SINR versus V.

by severe fluctuations and has the central angle and the angular
spread equal to 30° and 4°, respectively. The presumed signa an-
gular power density isa Gaussian function where the central angle
and the angular spread are assumed to be 32° and 6°, respectively.
The presumed and actual signal angular power densities are plot-
ted in Fig. 1. The interferer is assumed to have a uniform angular
power density characterized by the central angle —30° and angular
spread 4°. Figure 2 displays the performances of the techniques
tested versus N for the fixed SNR = 0 dB. Their performances
for the fixed data length N = 100 are displayed versus the SNR
in Fig. 3. From Figs. 2 and 3, it can be seen that our beamformer
outperforms the conventional and benchmark SMI techniques as
well as the LSMI algorithm with the fixed DL factor.

6. CONCLUSIONS

A new closed-form robust approach to adaptive beamforming us-
ing the optimization of the worst-case SINR has been proposed.
Our technique has been developed for the general case of an arbi-
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Fig. 3. Output SINR versus SNR.

trary rank of the desired signal model and combines two types of
DL applied to the signal and the data covariance matrices. Itscom-
putationally efficient on-line implementation has been derived.

7. REFERENCES

[1] D. D. Feldman and L. J. Griffiths, “A projection approach to
robust adaptive beamforming,” |EEE Trans. Sgnal Process-
ing, vol. 42, pp. 867-876, Apr. 1994.

[2] H. Cox, R. M. Zeskind, and M. H. Owen, “Robust adaptive
beamforming,” |EEE Trans. Acoust., Speech, Sgnal Process-
ing, vol. 35, pp. 1365-1376, Oct. 1987.

[3] A.B. Gershman, “Robust adaptive beamforming in sensor ar-
rays,” Int. Journ. Electronics and Communications, vol. 53,
pp. 305-314, Dec. 1999.

[4] R. A. Monzingo and T. W. Miller, Introduction to Adaptive
Arrays, Wiley, NY, 1980.

[5] S. A. Vorobyov, A. B. Gershman, and Z-Q. Luo, “Ro-
bust adaptive beamforming using worst-case performance op-
timization via second-order cone programming,” in Proc.
ICASSP' 02, Orlando, FL, Apr. 2002, pp. 2901-2904.

[6] S. A. Vorobyov, A. B. Gershman, and Z-Q. Luo, “Robust
adaptive beamforming using worst-case performance opti-
mization: A solution to the signal mismatch problem,” |EEE
Trans. Sgnal Processing, to appear in Feb. 2003.

[7] R. Lorenz and S. P. Boyd, “Robust minimum variance beam-
forming,” submitted to |EEE Trans. Signal Processing.

[8] K.I.Pedersen, P. E. Mogensen, and B. H. Fleury, “A stochas-
tic model of the temporal and azimuthal dispersion seen at
the base station in outdoor propagation environments,” |EEE
Trans. Veh. Technology, vol. 49, pp. 437-447, March 2000.

[9] O.Besson, F. Vincent, P. Stoica, and A. B. Gershman, “Maxi-
mum likelihood estimation for array processing in multiplica-
tive noise environments,” |EEE Trans. Sgnal Processing, vol.
48, pp. 2506-2518, Sept. 2000.

[10] S. Shahbazpanahi, A. B. Gershman, Z-Q. Luo, and
K. M. Wong, “Robust adaptive beamforming for general-rank
signal models,” submitted to IEEE Trans. Sgnal Processing.

V - 336




