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ABSTRACT 

 
This paper presents a highly efficient geometrical 
approach for designing robust minimum variance (RMV) 
beamformers against uncertainties in the array steering 
vector. Instead of the conventional approach of modeling 
the uncertainty region by a convex closed space, the 
proposed algorithm exploits the optimization constraint 
and shows that optimization only needs to be done on the 
intersection of a hyperplane and a second-order cone 
(SOC). The problem can then be cast as a second-order 
cone programming (SOCP) problem so as to enjoy the 
high efficiency of a class of interior point algorithms. A 
general case of modeling the uncertainties of an array 
using complex-plane trapezoids is investigated. The 
efficiency and tightness of the proposed method over other 
schemes are demonstrated with numerical examples. 

 

1. INTRODUCTION 
 
  In antenna array design, uncertainties in the steering 
vector of the desired signal can arise due to a multitude of 
reasons including array calibration errors, uncertainty in 
the angle-of-arrival (AOA), array imperfection and 
environmental inhomogeneities etc. [1]-[4]. The minimum 
variance (MV) beamformer is an application of the 
Capon’s method [5] that minimizes the variance of the 
combined array output while maintaining a unity gain 
towards the look direction. Nonetheless, the performance 
of this MV beamformer is known to be quite sensitive and 
susceptible to mismatches in the presumed and actual 
steering vectors [4]. 
  Recent progress has been made by transforming the 
robust beamformer design into a programming task [1], 
[2], [6]. The steering vector is modeled as part of a convex 
set (the uncertainty region) and optimization is done for all 
elements within this set. One example is to encompass the 
uncertainty by a hypersphere around the nominal steering 
vector [1]. The optimization is then cast as an SOCP 
problem [7] and solved efficiently via interior point 
algorithms (e.g., [8], [9]). Simulations have shown the 
superiority of this approach over other popular robust 

beamformers in adaptive arrays [1]. However, a 
hypersphere derived from the strong worst-case condition 
does not exploit the structure of the uncertainty, and may 
sometimes lead to impractical or even infeasible design. 
Another robust design method is to encompass the 
uncertainty set by a polyhedral cone [2]. A drawback is 
that the use of a polyhedral cone with limited extreme rays 
(the basis rays of a cone) can result in overly conservative 
constraints as in the previous case, while increasing the 
number of extreme rays will cause an exponential growth 
in the problem complexity and prohibit its use in larger 
arrays. Also, the cone angle determination of the 
polyhedral cone was not pursued further in [2]. 
  This paper extends the polyhedral cone bounding idea to 
a second-order cone (SOC) and provides a constructive 
way to obtain the smallest SOC encompassing the 
uncertainty convex set. By exploiting the optimization 
constraint, it is shown that optimization only needs to be 
done on the intersection of an SOC and a hyperplane 
outside the convex set. The problem can naturally be 
formulated and solved as an SOCP problem. With 
numerical examples, the robust minimum variance (RMV) 
beamformer obtained this way is shown to have accurate 
uncertainty modeling and favorable power requirement. 
 

2. MINIMUM VARIANCE BEAMFORMING 
 
  First, the output ( ) Nt ∈x �  of an N -element array is 

( ) ( ) ( ) ( ) ( )t s t t tθ= + +i ix a A S n  (1) 

where ( ) Nθ ∈a �  is the steering vector of the desired 

narrowband signal ( )s t , iA  is an N L×  matrix whose 

l th column, ( )lθa , is the steering vector of the l th 

interfering signal in ( )tiS  = 1[ ( ) ( )]T
Ls t s t� , and 

( ) Nt ∈n �  is the additive noise component. The combined 

output of the array subject to a complex weight w  is 
( ) ( )y t t∗= w x  (2) 

Here ( )∗
�  denotes conjugate transpose. The interference-

plus-noise covariance matrix inR  is defined as 

( )( ( ) ( ))( ( ) ( ))t t t t ∗= + +in i i i iR E A S n A S n  (3) 

whereas the sample covariance matrix xR  is defined (and  
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approximated by M  recently received samples) as 

1

1
( ) ( ) ( )

M

p

p p
M

∗ ∗

=

= ≈ ∑xR E xx x x  
(4) 

A metric for the performance of a beamformer is the 
signal-to-interference-plus-noise ratio (SINR) defined as 

2
( )SINR θ∗ ∗= inw a w R w  (5) 

The MV beamformer is obtained by solving 
min( )  subject to  ( ) 1pθ∗ ∗ =xw R w w a  (6) 

where pθ  and ( )pθa  are the presumed AOA and steering 

vector respectively. If this presumed steering vector 
matches the physical steering vector, we have an optimal 
solution of (6) given by the Capon’s method [5] 

1 1( ) ( ) ( )mv p p pθ θ θ− ∗ −= x xw R a a R a  (7) 

In the presence of steering vector uncertainties, the 
constraint in (6) is generalized to a gain greater than or 
equal to unity [1], [2], i.e., 

min( )  subject to  Re( ) 1,  ∗ ∗ ≥ ∀ ∈Ωxw R w w a a  (8) 

where Re( )�  and Im( )�  (below) give the real part and 

imaginary parts of its argument and Ω  is a set that 
contains the uncertainties of the steering vector a . For 
ease of programming, complex quantities are transformed 
into real values (indicated by tildes) by defining 

Re( ) Re( )
,  = ,

Im( ) Im( )

Re( ) Im( )

Im( ) Re( )

   
=    

   

− 
=  

 

x x
x

x x

w a
w a

w a

R R
R

R R

��

�

 

 
 
(9) 

such that (8) can be rewritten as 

min( )  subject to  1,  T T ≥ ∀ ∈Ωxw R w w a a� �

� �� � �  (10) 

where Ω�  is an appropriate set derived from Ω . 
 

3. GEOMETRICAL APPROACH 
 

  Now suppose we have a set of sample points Ω�  = 

{ }1 2, ,a a� � �  whose convex combinations denote the 

possible values of a� . Since the optimization constraint 
1T ≥w a��  in (10) is convex in a� , optimization can be 

performed under a stronger condition, namely, on the 
vertices or curved boundaries of a convex set that contains 

Ω�  (e.g., see [6]). With reference to Fig. 1, the proposed 
generic RMV beamforming algorithm is summarized in 
the following 4 steps: 
 
Step 1. Construct a minimum convex hull of Ω� . 
Step 2. Fit the smallest SOC around the hull. 
Step 3. Intersect the cone with a hyperplane tangent to the 
bottom of the hull. 
Step 4. Optimize (10) with respect to w�  on the rim of the 
hyperellipse resulting from the intersection. 

convex hull of
second-
order
cone

hyperellipse

origin
0

Ω�

 
Fig. 1. A second-order cone bounding the convex hull of Ω� . 
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Fig. 2. Uncertainty of a steering vector element (bold annulus 
sector) bounded in a trapezoid (formed by the 4 dots). 
 
  A novelty here is that by convexity, it can be easily 
proved that if the optimization constraint holds on the rim 
of the hyperellipse, it is also satisfied for any a�  on the 
hyperellipse and the portion of the SOC above it, thereby 
including the convex hull. There is freedom in choosing 
the hyperplane in step 2. It can be chosen to minimize its 
distance to the hull or in a way to minimize computation, 
as will be demonstrated in Section 4. In fact, solving (10) 
with respect to the vertices of the hull constitutes a 
possible solution but the complexity growth with the 
number of vertices renders it impractical for larger arrays. 
 

4. TRAPEZOIDAL UNCERTAINTY MODELING 
 
  This section presents a general method to model the un- 
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Fig. 3. (a) An upright SOC with variable cone angle. (b) Rotating Ω�  into the minimum bounding SOC. 

 
certainties in the steering vector and demonstrates 
application of the proposed algorithm. Let a  = 

1[ ]T
Na a� . Referring to Fig. 2, an element ia  in a  

may be subject to phase uncertainties iα , iβ  due to 

uncertain AOA, and phase and gain uncertainties, iψ , iγ  

and iδ , due to the amplifier. Thus ia  can assume any 

value inside the highlighted annulus sector in Fig. 2. A 
convenient way to encompass this sector is by a trapezoid 
with vertices 1ia′ , 2ia′ , 3ia′ , 4ia′ . Defining the vectors 

1 2[ ]      1,2,3,4T
k k k Nka a a k′ ′ ′ ′= =a �  (11) 

whose normalized (unit-length) centroid is 
4 4

1 1
k k

k k= =

′ ′=∑ ∑c a a  
 
(12) 

where   �  denotes the usual Euclidean vector norm, it 

can be seen that each element in the uncertain steering 
vector can be formed by a convex combination of the 
corresponding elements in these k′a s. So the convex set 

Ω  in (8) can be defined as the union of these points, i.e., 

1 21 2

1, 2,3 or 4
[ ]  

1,2,.....,N

iT
k k Nk

k
a a a

i N

 =  ′ ′ ′Ω =  =  
�  

 
(13) 

It is not hard to verify that Ω  is convex and every point in 
Ω  constitutes a vertex of the minimum convex hull (of 4N 

vertices) of Ω . Apparently, Ω�  is formed by stacking the 
real and imaginary parts of each point in Ω . Next, let’s 
define a (convex) SOC of dimension 2N  as 

1 2 1
1 1 , , ,Nx

x xλ λ λ−   ∈ ℜ ∈ ℜ ≥  
   

2 2
2

x x
x

�Κ  
 
(14) 

As in Fig. 3(a), λ  is a parameter that controls the cone 
angle with a large λ  giving rise to a narrow cone and vice 

versa. All points in Ω�  are then rotated into the orientation 
of the SOC to find the tightest SOC that just contains the 

rotated Ω�  [Fig. 3(b)]. The Householder transform H�  can 

conveniently rotate the point aggregate to an arbitrary 
direction (e.g., [2]). In our example the unit-vector along 
the SOC symmetry axis, z�  = [1 0 0]T

�

2N∈ ℜ , is 

chosen as the reference. Defining c�  = [Re( )  Im( ) ]T T Tc c , 

( )( )
2 ,

( ) ( )

,

T

T

 − −− ≠= − −
 =

c z c z
I c z

H c z c z

I c z

� �� �

� �

�

� �� �

� �

 
 
(15) 

where 1−H�  = TH�  = H� . Due to the structure of Ω� , the 
hyperellipse in step 3 (Section 3) of the proposed 

algorithm is a hypercircle tangent to the bottom of ΩH� �  at 
a height of minr , as in Fig. 3(b). To limit the length of this 

paper, the following facts are given without further 
elaboration: 1. Choosing c� , instead of other reference 

direction for Ω� , is due to its simple computation and the 
nearly-optimal 

minλK  that it gives; 2. minr  can be obtained 

by the projection (a real value) of a point in Ω  [wherein 

ik  is either 1 or 2 in (13)] onto c ; 3. minλ  can be obtained 

in 1N −  comparison steps (As a reference, it requires 4N  
comparisons to obtain the radius of the smallest 
hypersphere in [1] bounding the annulus sector in Fig. 2). 
  Now, as described in step 4 of the proposed algorithm, 
optimization is performed on the hypercircle 

min

min 2 1 min

min

 where ,Nr r
λ λ

− 
∈ ∈ ℜ = 

 
z z

z

d d
d

� �

�

K  
 
(16) 

Noting Ω�  = ( )ΩH H� � � , the gain constraint in (10) becomes 

min( [ ] ) 1T T Tr ≥zw H d� �

�  (17) 

Let 1H�  be the first row in H�  and 2H�  be H�  without the 

first row, (17) can be rewritten as 

1T− ≤ −z 2 1d H w H w� � �

� �  (18) 

The maximum of the left hand side of (18) is achieved 

when zd�  = min min( / ) / || ||r λ− 2 2H w H w� �

� � . So by introducing 
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Fig. 4(a)-(c). Results of the Capon MV beamformer (MV), 
hypersphere beamformer (SPH RMV) and the proposed 
beamformer (SOC RMV) against AOA. 
 

an auxiliary variable ε , and letting xR�  = TU U� �  be the 

Cholesky factorization of xR� , (10) is equivalent to: 

min

min

min( ) subject to

 and 1
r

ε

ε
λ

≤ ≤ −2 1Uw H w H w� � �

� � �

 
 
(19) 

which is in the standard SOCP format [7], namely, 
minimizing a linear function over the intersection of an 
affine set and the product of SOCs. Efficient interior point 
algorithms [7]-[9] of worst-case iteration count bounded 

above by ( )O N  can then be used to solve (19). 

 
5. NUMERICAL EXAMPLES 

 
  Suppose three unit-power far-field signals are impinging 
on an 8-element uniform array separated by half 
wavelengths. Two of them are interference signals with 
AOAs 0o and 40o. The desired signal is coming from 20o 
with an uncertainty of ±3o. For simplicity, all signals and 
the additive white Gaussian noise are assumed to be 
uncorrelated. The signal-to-noise ratio (SNR) is 10 dB. 
The steering vector elements all have a gain uncertainty of 
0.05 and a phase uncertainty of 5o. The traditional MV, the 
hypersphere RMV and the proposed SOC RMV 
beamformers are compared and the results are as shown in 
Fig. 4. Using the public software in [9], the latter two 
SOCP problems are solved in generally less than 10 
iterations (in fact, this is almost independent of the 
problem size). Fig. 4(a) shows the SINR for the three 
approaches, showing that there are tradeoffs in the peak 
SINR for the robust beamformers. It can be seen from Fig. 
4(b) that the proposed SOC bounding method produces 
tighter results (gain ≥ 1) with respect to the specified range 
of uncertainty, while the hypersphere bounding method 
results in an “over-design” due to its inherent conservative 
nature. A major drawback of the hypersphere method is 

the increased power consumption proportional to 2|| ||w  

(= 2|| ||w� ) [6], illustrated in Fig. 4(c), that can cause the 

design to be practically infeasible. The proposed 
beamformer is superior since it always consumes a power 
comparable to the optimal value of the traditional Capon 
MV beamformer. 
 

6. CONCLUSION 
 
  This paper has presented a geometrical approach for 
designing RMV beamformers using SOC bounding 
method. The algorithm exploits the convexity of the 
optimization constraint and reduces the dimension of the 
optimization process from a convex hull to the 
circumference of a hyperellipse. Its efficiency has been 
demonstrated through a general example of modeling 
array uncertainties using complex-plane trapezoids. The 
beamforming task has been transformed into an SOCP 
problem and efficiently solved using interior point 
algorithms. Numerical examples have confirmed the 
effectiveness, tightness and practicality of the proposed 
beamformer over other schemes. 
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