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ABSTRACT

This paper presents a highly efficient geometrical
approach for designing robust minimum variance (RMV)
beamformers against uncertainties in the array steering
vector. Instead of the conventional approach of modeling
the uncertainty region by a convex closed space, the
proposed algorithm exploits the optimization constraint
and shows that optimization only needs to be done on the
intersection of a hyperplane and a second-order cone
(SOC). The problem can then be cast as a second-order
cone programming (SOCP) problem so as to enjoy the
high efficiency of a class of interior point algorithms. A
general case of modeling the uncertainties of an array
using complex-plane trapezoids is investigated. The
efficiency and tightness of the proposed method over other
schemes are demonstrated with numerical examples.

1. INTRODUCTION

In antenna array design, uncertainties in the steering
vector of the desired signal can arise due to a multitude of
reasons including array calibration errors, uncertainty in
the angle-of-arrival (AOA), array imperfection and
environmental inhomogeneities etc. [1]-[4]. The minimum
variance (MV) beamformer is an application of the
Capon’s method [5] that minimizes the variance of the
combined array output while maintaining a unity gan
towards the look direction. Nonetheless, the performance
of this MV beamformer is known to be quite sensitive and
susceptible to mismatches in the presumed and actual
steering vectors [4].

Recent progress has been made by transforming the
robust beamformer design into a programming task [1],
[2], [6]. The steering vector is modeled as part of a convex
set (the uncertainty region) and optimization is done for all
elements within this set. One example is to encompass the
uncertainty by a hypersphere around the nominal steering
vector [1]. The optimization is then cast as an SOCP
problem [7] and solved efficiently via interior point
agorithms (e.g., [8], [9]). Simulations have shown the
superiority of this approach over other popular robust
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beamformers in adaptive arrays [1]. However, a
hypersphere derived from the strong worst-case condition
does not exploit the structure of the uncertainty, and may
sometimes lead to impractical or even infeasible design.
Another robust design method is to encompass the
uncertainty set by a polyhedral cone [2]. A drawback is
that the use of a polyhedral cone with limited extreme rays
(the basis rays of a cone) can result in overly conservative
constraints as in the previous case, while increasing the
number of extreme rays will cause an exponential growth
in the problem complexity and prohibit its use in larger
arrays. Also, the cone angle determination of the
polyhedral cone was not pursued further in[2].

This paper extends the polyhedral cone bounding idea to
a second-order cone (SOC) and provides a constructive
way to obtain the smalest SOC encompassing the
uncertainty convex set. By exploiting the optimization
constraint, it is shown that optimization only needs to be
done on the intersection of an SOC and a hyperplane
outside the convex set. The problem can naturaly be
formulated and solved as an SOCP problem. With
numerical examples, the robust minimum variance (RMV)
beamformer obtained this way is shown to have accurate
uncertainty modeling and favorable power requirement.

2. MINIMUM VARIANCE BEAMFORMING

First, the output x(t) JC" of an N -element array is
x(t) =a(@)s(t) +A;S,(t) +n(t) D
where a(@) OC" is the steering vector of the desired
narrowband signal s(t), A, isan NXxL matrix whose
I th column, a(§), is the steering vector of the |th
interfering signa in S(t) = [s(t) s )], and
n(t)OC" is the additive noise component. The combined
output of the array subject to acomplex weight w is
y(t) = w(t) @)
Here (c)" denotes conjugate transpose. The interference-
plus-noise covariance matrix R,, isdefined as
R, =E((AS®+n®)AS® +n)’) O
whereas the sample covariance matrix R, isdefined (and
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approximated by M recently received samples) as
1 M
R, =E(xx") v 2 X(P)X(p)’
p=L

A metric for the performance of a beamformer is the
signal-to-interference-plus-noise ratio (SINR) defined as

(4)

SINR=|wa()’ WR W ®)
The MV beamformer is obtained by solving
min(w"R,w) subjectto w'a(d,) =1 (6)

where 6, and a(6,) are the presumed AOA and steering

vector respectively. If this presumed steering vector
matches the physical steering vector, we have an optimal
solution of (6) given by the Capon’s method [5]

w,, =R;a(,)/a(8,) R, 'a(6,) )
In the presence of steering vector uncertainties, the
congtraint in (6) is generalized to a gain greater than or
equal to unity [1],[2], i.e.,
min(w"R,w) subjectto Re(wa)>1, JaQ )
where Re(c) and Im(c) (below) give the rea part and

imaginary parts of its argument and Q is a set that
contains the uncertainties of the steering vector a. For
ease of programming, complex quantities are transformed
into real values (indicated by tildes) by defining

[
Im(w) Im(a)
5 {Re(Rx) —lm(Rx)}
*[Im(R,) Re(R,)
such that (8) can be rewritten as
min(W'R, W) subjectto W'a>1, 0&Q ~ (10)
where Q isan appropriate set derived from Q .

(©)

3. GEOMETRICAL APPROACH

Now suppose we have a set of sample points Q =
{a,.a,,-~} whose convex combinations denote the

possible values of &. Since the optimization constraint

Ww'a=1 in (10) is convex in &, optimization can be
performed under a stronger condition, namely, on the
vertices or curved boundaries of a convex set that contains
Q (eg., see [6]). With reference to Fig. 1, the proposed
generic RMV beamforming algorithm is summarized in
the following 4 steps:

Step 1. Construct aminimum convex hull of Q .

Step 2. Fit the smallest SOC around the hull.

Step 3. Intersect the cone with a hyperplane tangent to the
bottom of the hull.

Step 4. Optimize (10) with respect to W on the rim of the
hyperellipse resulting from the intersection.

0

Fig. 2. Uncertainty of a steering vector element (bold annulus
sector) bounded in a trapezoid (formed by the 4 dots).

A novelty here is that by convexity, it can be easily
proved that if the optimization constraint holds on the rim
of the hyperellipse, it is also satisfied for any & on the
hyperellipse and the portion of the SOC above it, thereby
including the convex hull. There is freedom in choosing
the hyperplane in step 2. It can be chosen to minimize its
distance to the hull or in a way to minimize computation,
as will be demonstrated in Section 4. In fact, solving (10)
with respect to the vertices of the hull congtitutes a
possible solution but the complexity growth with the
number of vertices rendersit impractical for larger arrays.

4. TRAPEZOIDAL UNCERTAINTY MODELING

This section presents a general method to model the un-
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certainties in the steering vector and demonstrates
application of the proposed agorithm. Let a =

[a, - a,]". Referring to Fig. 2, an element a in a
may be subject to phase uncertainties «a,, [ due to
uncertain AOA, and phase and gain uncertainties, ¢;, y;
and J,, due to the amplifier. Thus a can assume any
value inside the highlighted annulus sector in Fig. 2. A
convenient way to encompass this sector is by a trapezoid
with vertices &), &,, a,, a,. Defining the vectors
a) =[a, a, dyl" k=1234 (11

whose normalized (unit-length) centroid is

4 4
c=)Ya / > a,
k=1 k=1
where denotes the usual Euclidean vector norm, it

can be seen that each element in the uncertain steering
vector can be formed by a convex combination of the
corresponding elements in these a, s. So the convex set

Q in (8) can be defined as the union of these points, i.e.,
, , ! k =1,2,30r 4
Q= {[alkl Ay, v By I 3)

It isnot hard to verify that Q isconvex and every pointin
Q constitutes a vertex of the minimum convex hull (of 4"

vertices) of Q . Apparently, Q is formed by stacking the
real and imaginary parts of each point in Q. Next, let's
define a (convex) SOC of dimension 2N as

Kz{m AL T2 AIIXZII} (14

Asin Fig. 3(@), A is a parameter that controls the cone
anglewith alarge A giving rise to a narrow cone and vice

versa. All pointsin Q are then rotated into the orientation
of the SOC to find the tightest SOC that just contains the

rotated Q [Fig. 3(b)]. The Householder transform H can

(12)

o

by Househol der

e o®% e
Optimize on the rim of R ol
this hypercircle o° e
®
X,-plane

(b)

Fig. 3. (a) An upright SOC with variable cone angle. (b) Rotating Q into the minimum bounding SOC.

conveniently rotate the point aggregate to an arbitrary

direction (e.g., [2]). In our example the unit-vector along

the SOC symmetry axis, Z = [1 0 o'm *V,is
chosen as the reference. Defining € = [Re(c)" Im(c)']",
t _2((:—2)((:—2)T

H= E-2)'@E-2)’

I c=2

(@13

zZ (15)

where H™* = H™ = H. Due to the structure of Q , the
hyperellipse in step 3 (Section 3) of the proposed
agorithm is a hypercircle tangent to the bottom of HQ at
aheight of r, , asin Fig. 3(b). To limit the length of this

paper, the following facts are given without further
elaboration: 1. Choosing €, instead of other reference

direction for Q , is due to its smple computation and the
nearly-optimal K,  that it gives; 2. r,;, can be obtained
by the projection (area value) of a point in Q [wherein
k iseither 1 or 2in(13)] onto c; 3. A,;, can be obtained
in N -1 comparison steps (As areference, it requires 4N
comparisons to obtain the radius of the smallest
hypersphere in [1] bounding the annulus sector in Fig. 2).
Now, as described in step 4 of the proposed algorithm,
optimization is performed on the hypercircle
d¢

z

n

rmi n
e

min

{E‘”}DK% whered[m >V,
Noting Q = H(HQ) , the gain constraint in (10) becomes
W' (Fr,, dl]")=1 (17)
Let H, bethefirstrowin H and H, be H without the
first row, (17) can be rewritten as

-dTH,W <H,W-1 (18)
The maximum of the left hand side of (18) is achieved
whend, = —(r. /A JH,W/| H,W||. So by introducing

min
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Fig. 4(a)-(c). Results of the Capon MV beamformer (MV),
hypersphere beamformer (SPH RMV) and the proposed
beamformer (SOC RMV) against AOA.
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an auxiliary variable £, and letting R, = UTU be the
Cholesky factorization of R, , (10) is equivalent to:

min(&) subject to

. r (19)
||Uw|| <gand M-
/]min

which is in the standard SOCP format [7], namely,
minimizing a linear function over the intersection of an
affine set and the product of SOCs. Efficient interior point
agorithms [7]-[9] of worst-case iteration count bounded

above by O(\/N ) canthen be used to solve (19).

AW < AW -1

5.NUMERICAL EXAMPLES

Suppose three unit-power far-field signals are impinging
on an 8-element uniform array separated by half
wavelengths. Two of them are interference signals with
AOAs 0° and 40°. The desired signal is coming from 20°
with an uncertainty of +3° For simplicity, all signals and
the additive white Gaussian noise are assumed to be
uncorrelated. The signal-to-noise ratio (SNR) is 10 dB.
The steering vector elements all have a gain uncertainty of
0.05 and a phase uncertainty of 5°. The traditional MV, the
hypersphere  RMV and the proposed SOC RMV
beamformers are compared and the results are as shown in
Fig. 4. Using the public software in [9], the latter two
SOCP problems are solved in generadly less than 10
iterations (in fact, this is amost independent of the
problem size). Fig. 4(a) shows the SINR for the three
approaches, showing that there are tradeoffs in the peak
SINR for the robust beamformers. It can be seen from Fig.
4(b) that the proposed SOC bounding method produces
tighter results (gain = 1) with respect to the specified range
of uncertainty, while the hypersphere bounding method
resultsin an “over-design” due to itsinherent conservative
nature. A mgjor drawback of the hypersphere method is

the increased power consumption proportional to ||w |
(= |W|P) [6], illustrated in Fig. 4(c), that can cause the

design to be practicaly infeasible. The proposed
beamformer is superior since it always consumes a power
comparable to the optimal value of the traditional Capon
MV beamformer.

6. CONCLUSION

This paper has presented a geometrical approach for
designing RMV beamformers using SOC bounding
method. The algorithm exploits the convexity of the
optimization constraint and reduces the dimension of the
optimization process from a convex hull to the
circumference of a hyperellipse. Its efficiency has been
demonstrated through a general example of modeling
array uncertainties using complex-plane trapezoids. The
beamforming task has been transformed into an SOCP
problem and efficiently solved using interior point
algorithms. Numerical examples have confirmed the
effectiveness, tightness and practicality of the proposed
beamformer over other schemes.
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