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ABSTRACT

In radar applications, adaptive beampatterns with low sidelobes
and stable mainlobe shapes are desired to suppress pulsed decep-
tive jammers or sidelobe targets and to accurately measure the
direction-of-arrival (DOA) of a target using monopulse techniques.
In practice, all kinds of errors exist, such as signal pointing errors,
array calibration errors and array covariance matrix estimation er-
rors. In the presence of these errors, adaptive beamformers can
suffer from severe performance degradations, including poor inter-
ference rejection, distorted mainlobes, and high sidelobes. In this
paper, we investigate how a quadratic constraint based adaptive
beamformer with peak sidelobe control, referred to as the PPSC
(Precise Peak Sidelobe Control) method, can be combined with a
signal removal scheme to achieve desired adaptive beampatterns
and interference rejection performance for a uniform linear array.
Numerical results are provided to demonstrate the performance of
the proposed method.

1. INTRODUCTION
Modern radars use a variety of electronic counter-counter-measures
(ECCM) to suppress both intentional jamming (including long-
duty-cycle jammers and pulsed deceptive jammers) and inadver-
tent interference (clutter, densed sidelobe targets, etc.) [1]. Adap-
tive beamformers designed for radar antenna arrays (also called
adaptive arrays) have proven to be a very effective ECCM tech-
nique [2]. Adaptive beamforming is very effective for long-duty-
cycle interference (continuous jammers and clutter) rejection since
their statistics can be estimated from multiple available data sam-
ples with identical or similar statistical distributions. However,
target-like pulsed deceptive jammers and sidelobe targets are dif-
ficult to suppress since their duration time is too short. They can
only be mitigated by low sidelobes. Tracking requires accurate
measurement of the target position. Monopulse techniques [3] are
usually used to determine the DOA of a target within a fraction of
a beamwidth by comparing the measurements received in two or
more simultaneous beams (such as the sum and difference beams).
Stable mainlobe shapes are critically needed for the accurate es-
timation of the DOA of a target via the monopulse techniques.
Hence, adaptive beamformers in radar applications often need to
have adaptive beampatterns with low peak sidelobes, stable main-
lobes, and deep nulls in the incident angles of long-duty-cycle in-
terference.

Almost all of the adaptive beamforming approaches, such as,
for example, the standard Capon beamformer (SCB) [4] and the�
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robust Capon beamformer (RCB) [5] are mainly concerned with
interference rejection while peak sidelobe control is not consid-
ered.

In [6], a quadratic constraint based algorithm, referred to as
the Precise Peak Sidelobe Control (PPSC) approach was proposed.
PPSC is a diagonal loading approach but the diagonal loading level
can be determined according to the Desired Peak Sidelobe Level
(DPSL) for uniform linear arrays. In this paper, the effects of the
presence of target signals on PPSC are investigated and we show
how PPSC can be combined with a signal removal scheme for im-
proved mainlobe control performance.

2. PRECISE PEAK SIDELOBE CONTROL (PPSC)
Consider a uniform linear array comprised of � elements. The
received data vector can be modeled as
���
	���
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where ���
	�� is the 	 th snapshot, . is the number of snapshots,���
	�� denotes the target signal, � � �
	�� is the interference data vec-
tor, !#�
	�� denotes the receiver noise vector which is modeled as
a zero-mean spatially white Gaussian random process, and ����� � �
denotes the array steering vector of the target:

����� � �0
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with �=+ � K denoting the transpose, L being the element spacing, M
the wavelength, and � � the direction of arrival (DOA) of the target.

The sample covariance matrix is defined as
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where �=+ � V denotes the conjugate transpose.
Let �YX denote the quiescent weight vector, which is usually

designed to produce beampatterns (called quiescent beampatterns)
with desired mainlobe beamwidth and low peak sidelobes. In this
paper, we design �YX as follows:

�YXZ
 1\[ U 36587 �:9 ;=<?>@ ADC:E ��]��^+6+-+_[ G 36587 �:9 ;=<�G0>@ ADC:E ��],� I K
(4)

where ` [,acb Ga SdU are the tapper settings (e.g., Chebyshev or Taylor
weights) and � ] denotes the pointing angle. Without loss of gener-
ality, we assume that the tapper settings satisfy e Ga S�U [,af
'& .

In [6], a quadratic constraint based approach, referred to as the
Precise Peak Sidelobe Control (PPSC), was proposed, which finds
the adaptive weight vector as follows:

g ChEikj V
NO j (5)

subject to l jnm � X lporq U (6)
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where q U is a small positive value satisfying q U � l � X l (to guaran-
tee a nonzero or nontrivial solution). The constraint defined in (6)
is used to control the difference between the adaptive and desired
quiescent beampatterns. We can explicitly relate q U to the Desired
Peak Sidelobe Level (DPSL) by using the following expression

DPSL (dB) 
'& & � &�������� U ] q ; U) (7)

By choosing q U using (6), the peak sidelobe level is achieved with
a probability of 	�	�
 	�� .

To solve (5) and (6), we first compute the eigendecomposition
of

NO NO 
�
���
�V (8)

where 
 
 1�� U � ; +-+-+ � G I (9)

and �r
 diag 1 M U $ M ; $ +-+-+ $ M G I (10)

with � a and M a � M U�� M ; � +-+-+ � M G � denoting the � th eigen-
vector and the � th eigenvalue of

NO
, respectively. By using the

Lagrange multiplier technique, we get

j�������� 
��#� NO �����-�! U �YX (11)

Note that PPSC is a diagonal loading approach and the diagonal
loading value ( �#"$� ) is precisely determined by solving the fol-
lowing equation% �&� �('
 GQ

a S�U
) M a�W� M a+* ;-, . X�� � � , ; 
 q ; U (12)

where
. X�� � � denotes the � th element of the vector � X .

Note also that
% �&� � is a monotonically decreasing function of��"/� . Since

% �0��� 
 l � X l ; " q ; U and
% �21r� 
3� � q ; U , the

solution of � is unique. Note that [6]

M G � l � X l m q U �
q U o � o M U � l �YX l m q U �

q U (13)

The solution � to (12) can be efficiently determined by using, e.g.,
the Newton’s method, within the interval in (13). Hence PPSC
requires 4 � �65 � flops.

3. EFFECTS OF THE PRESENCE OF TARGET SIGNALS
AND THEIR REMOVAL

By using
NO  U 
 e Ga SdU U@87 � a � Va , the adaptive beampattern ob-

tained by PPSC ( 9 ������� ����� ) can be decomposed as follows9 �:�;��� ��� �_
 j V������� ����� � (14)
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where 9 X �����0
 � VX ����� � denotes the quiescent beampattern, 9 a �����
 � Va ������� denotes the � th eigen beampattern, and < a 
n� VX � a
represents the spatial correlation between the steering vector and
the � th eigenvector.

Define the perturbation beampattern after adaptive processing
with PPSC as> 9 ����� 
 9 �:�;��� ��� � m 9 X���� � (16)
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Then the average power A of the perturbation beampattern satis-
fies A '
 &BDCFE G E G

, > 9 ����� , ; L � (18)
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 � l j m � X l ; (21)
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For simplicity, assume that the received data consist of only
one target signal and the receiver noise andNO 
 O 
IH ;� ����� � ��� V\��� � � �?H ;J � (23)

where H ;� and H ;J denote the powers of the target signal and noise,
respectively. In this case, the perturbation beampattern can be writ-
ten as > 9 ��� �0
 m � H ;�

� H ;� ��H ;J ����< U 9 U ����� (24)

where

< U 
 &K � �cVX ����� � �0
 &K � GQ
a S�U
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and
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Note that since A is bounded by (22), the smaller the signal point-
ing error (

, � � m ��] , ), the larger the diagonal loading value. Also,
the higher the H ;� , the larger the diagonal loading value.

To reduce the high sidelobes due to the spread of small noise
eigenvalues caused by the covariance matrix estimation errors, a
small diagonal loading value is enough. However, it can be noted
from (24) that when the SNR is high or the pointing error is small,
a much larger diagonal loading value is needed for mainlobe shape
control, which may cause performance loss for weak interference
rejection. Below we give a signal removal procedure to deal with
this problem.

Define

�Z
�a:b�� gca 5a `
, < a , $ � 
'&($�)*$-+-+6+�$ � b (27)

where < a is the spatial correlation between � X and the � a as de-
fined in (15). Then � � is the closest eigenvector to the steering
vector �YX . If

, < � , exceeds a predetermined threshold, say d , then
we can assume there is a target and determine the covariance ma-
trix after signal removal byNOfehgji 
 NO m M � � � � V� (28)

By replacing
NO

in (5) with
NOfehgji

in (28) we can obtain a new
algorithm, referred to as the Signal Removal PPSC (SR-PPSC)
method. Because of the covariance matrix estimation errors, the
signal removal is incomplete. However, since PPSC itself is very
robust against pointing and covariance matrix estimation errors,
incomplete signal removal is not a big problem and PPSC can deal
with it effectively. In addition, SR-PPSC also requires 4 � � 5 �
flops.
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4. EFFECTS OF ARRAY ERRORS AND REMEDIES
In practice, there also exist array calibration errors. Denote the
array manifold vector with calibration errors as������ �0
 �0�0� � ������� � (29)

where � 
 diag `�� U � 9�� U $ � ; � 9�� ; $,+-+-+ $ � G � 9�� G b (30)

with � a and � a denoting the random amplitude and phase errors,
respectively. Assume � a and � a are independent zero-mean Gaus-
sian random variables with variance H ;� and H ;� , respectively. Then
the peak sidelobe level of the true quiescent beampatterns in the
presence of calibration errors can be determined by [6, 7]

PSL (dB) 
 & & � &��+� ��� U ] l � X l ; �&H ;� � H ;� �) (31)

where e Ga SdU [ a 
 & is used. Note from (31) that for large cali-
bration errors, the peak sidelobe level is mainly determined by the
calibration error variance, no matter how low the peak sidelobe
level of the designed quiescent beampatterns is. Roughly speak-
ing, the achievable peak sidelobe level is nearly independent of the
weight settings in the presence of array calibration errors.

In the presence of array calibration errors, PPSC and SR-PPSC
can still work but the soft constraint factor q ; U must be determined
by

DPSL (dB) 
'& & � & �-����� U ] l � X l ; � q ; U � H ;� � H ;� �) (32)

5. NUMERICAL RESULTS
In this section, we present several numerical examples to evalu-
ate the performance of the proposed SR-PPSC algorithm. Assume
that the uniform linear array consists of � 
	� ) elements with el-
ement spacing L 
�� 
 
 M . Assume that one target and two jammers
impinge on the array with incident angles � � 
B) 
 ��� , � U 

����� ,
and � ; 
 m ��� � , respectively. The received data vector can be
written as

���
	��,
f���
	�� ��������-� ��� U �
	�� ������ U � ��� ; �
	�� �� ��� ; ��� !#�
	�� (33)
f���
	�� ��������-� � �����
	�����!#�
	���$D	B
 &($/)*$,+6+-+�$ . (34)

The powers for the target signal ���
	�� and the jammers ��� �
	�� , � 
&($�) , are denoted by H ;� 
�� 1 , ���
	�� , ; I and H ;� 
�� 1 , � � �
	�� , ; I ,� 
 &($�) , respectively, where ���:+ � denotes the expectation. The
noise vector !#�
	�� is a zero-mean white Gaussian random process
with variance H ;J . The single channel SNR (signal-to-noise ratio)
and JNR (jammer-to-noise ratio) are defined, respectively, as

SNR 
 H�;�H ;J (35)

and

JNR ��
 H�;�H ;J $ � 
'& $/) (36)

The output SINR (signal-to-interference-plus-noise ratio) is de-
fined as

SINR 
 H�;� , Nj V ������ � � , ;Nj V O e g i Nj (37)

where
Nj denotes the adaptive weight vector obtained using .

snapshots and

Ofe g i 
������ � e �
	���� !#�
	������ � e �
	�����!#�
	���� V � (38)

Unless otherwisely stated, in the following examples, we have. 
	!#" , the quiescent beampattern takes the m ";� dB Chebyshev
weights, the pointing angle is � ] 
F� � , JNR U 
 JNR ; 
$" 
 dB,
and 100 Monte-Carlo trials are used to obtain beampatterns and
SINR curves. The samples for both calibration errors and noise
vary from trial to trial.

First, we use an example to illustrate the effects of target sig-
nals and assume that there are no array calibration errors. We set
DPSL 
 m ) 
 dB and SNR = 0 dB. Figure 1 compares the diag-
onal loading values used by PPSC (“ % ”) and SR-PPSC (“ & ”) as a
function of the pointing error

, �?� m � ] , . Note from Figure 1 that
for the PPSC method, the larger the pointing error, the smaller the
diagonal loading value. When the target enters into the sidelobe
region, it will be treated as an interference and a small diagonal
loading value can make the sidelobes to be below DPSL. The ratio
r between the first and the second largest magnitudes of < a , which
represents the correlation between the steering vector and the � th
eigenvector of

NO
, is shown in Figure 2 as a function of

, � � m �?] , .
Note that when � � is within the mainlobe, r ' & , which can be
used to indicate the presence of a target signal. When

, � � m �?] , is
large (the target signal becomes interference), r ( & .

Now we consider the effects of array calibration errors. As-
sume the array has a &�� � calibration error (i.e., H � 
�H � 
 & � � ,
and H � 
 &�� � means H � 
3� 
 & radians). The ideal quiescent
beampattern is shown in Figure 3(a), which is a m ";� dB Cheby-
shev beampattern. The true beampatterns obtained using the ideal
quiescent weights in the presence of calibration errors are shown
in Figure 3(b). From Figures 3(a) and (b) it can be noted that,
as predicted by (31), although the designed peak sidelobe level is

m ";� dB, the practical beampatterns have a peak sidelobe level of
approximately -22 dB (i.e., PSL 
 m ) ) dB when the array has&�� � calibration errors). In this case, we want to control the peak
sidelobe level to DPSL 
 m ):� dB and the adaptive beampatterns
obtained via SCB, PPSC and SR-PPSC are shown in Figures 3(c),
3(d), 3(e), respectively. Note that although the quiescent beam-
pattern has a peak sidelobe level of m ";� dB, the peak sidelobes
of the adaptive beampatterns obtained via SCB rise up to m ) dB.
Also, SCB gives highly distorted mainlobes. On the other hand,
although the margin between DPSL and PSL (limited value of the
peak sidelobe level) is only 2 dB, both PPSC and SR-PPSC can
precisely control the peak sidelobe level of adaptive beampatterns.
The latter controls the mainlobe shape better than the former. In
Figure 3, SNR = 0 dB and � � 
 ) � . The SINR curves of SCB,
PPSC and SR-PPSC are compared in Figure 4. Note that both
PPSC and SR-PPSC significantly outperform SCB and SR-PPSC
performs better than PPSC for jammer suppression. This occurs
because after signal removal, the diagonal loading value is signifi-
cantly reduced.

6. CONCLUSIONS

Peak sidelobe control and mainlobe shape maintenance are very
important for robust adaptive array processing in radar. Effects of
target signals on a robust peak sidelobe control method, referred
to as Precise Peak Sidelobe Control (PPSC), are investigated and a
signal removal scheme is given to further improve its performance.
The proposed method exhibits excellent interference rejection per-
formance and superior beampattern control quality in the presence
of various errors including signal pointing and array calibration
errors.
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Fig. 3. Effects of array calibration errors on the quiescent and
adaptive beampatterns. (a) Ideal quiescent beampattern without
calibration errors, (b) true quiescent beampatterns with calibration
errors, and adaptive beampatterns obtained via (c) SCB, (d) PPSC,
and (e) SR-PPSC obtained when H � 
 H � 
 & � � , � U 
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 � � , � � 
 ) 
 � � , SNR 
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JNR ; = 45 dB.
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