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ABSTRACT

We newly propose a novel blind separation framework for binau-
ral acoustic signals based on the extended ICA algorithm, Binau-
ral ICA (BICA). The BICA consists of multiple ICAs and fidelity
controller, and each ICA runs in parallel under the control of the
fidelity of the whole separation system. The BICA can separate
the mixed signals into not monaural source signals but binaurally-
heard signals of independent sources. Thus, the separated signals
of BICA can maintain spatial qualities of each sound source. In
order to evaluate its effectiveness, separation experiments are car-
ried out under a reverberant condition. The experimental results
reveal that (1) the signal separation performance of the proposed
BICA is the same as that of the conventional ICA-based method,
and (2) the spatial quality of the separated sound in BICA is re-
markably superior to that of the conventional method, especially
for the fidelity of the sound reproduction.

1. INTRODUCTION

Blind source separation (BSS) is the approach taken to estimate
original source signals using only the information of the mixed
signals observed in each input channel. This technique can be
applicable to the high-quality hands-free telecommunication sys-
tems. In the recent works for the BSS based on the independent
component analysis (ICA) [1], various methods have been pro-
posed to deal with a separation of acoustical sounds which cor-
respond to convolutive mixture case [2, 3, 4]. However, the con-
ventional ICA-based BSS approaches are basically for extracting
each of independent sound sources as a monaural signal, and con-
sequently they have a serious drawback that the separated sounds
cannot maintain the information about directivity, localization, and
any spatial qualities of each sound source. This prevents any BSS
methods from being applied to the binaural signal processing and
high-fidelity sound reproduction system.

In this paper, we propose a new blind separation framework
for binaural acoustic signals based on the extended ICA algorithm,
Binaural ICA (BICA). In the scenario of BICA, the unknown mul-
tiple source signals which are mixed through unknown acousti-
cal transmission channels are observed at the microphones, and
these signals can be separated into not monaural source signals but
binaurally-heard signals of independent sources. Thus, the sep-
arated signals of BICA can maintain the spatial quality of each
sound source.

In order to evaluate its effectiveness, separation experiments
are carried out under a reverberant condition. The experimental
results reveal that (1) the signal separation performance of the pro-
posed BICA is the same as that of the conventional ICA, and (2)

the sound quality of the separated signals in BICA is remarkably
superior to that of the conventional ICA, especially for the spatial
quality and the fidelity of the sound reproduction.

2. MIXING PROCESS AND CONVENTIONAL BSS

2.1. Mixing process

In this study, the number of array elements (microphones) is K
and the number of multiple sound sources is L, where we deal
with the case of K = L = 2. In general, the observed signals in
which multiple source signals are mixed linearly are expressed as
the following equations:

�(t) =

N−1�
n=0

�(n)�(t − n) = �(z)�(t), (1)

where �(t) is the source signal vector, �(t) is the observed signal
vector, �(n) is the mixing matrix with the length of N , and �(z)
is the z-transform of �(n); these are given as

�(t) = [s1(t), · · · , sL(t)]T, (2)

�(t) = [x1(t), · · · , xK(t)]T, (3)

�(n) =

�
��

a11(n) · · · a1L(n)
...

. . .
...

aK1(n) · · · aKL(n)

�
�� , (4)

�(z) =

N−1�
n=0

�(n)z−n =

�
N−1�
n=0

aij(n)z−n

	
ij

, (5)

where z−1 is used as the unit-delay operator, i.e., z−n · x(t) =
x(t−n), akl is the impulse response between k-th microphone and
l-th sound source, and [X]ij denotes the matrix which includes the
element X in the i-th row and the j-th column.

2.2. Conventional ICA-based BSS method

As the BSS method, we consider the time-domain ICA (TDICA),
in which each element of the separation matrix is represented as
an FIR filter. In the TDICA, we optimize the separation matrix by
only using the fullband observed signals without subband process-
ing (see Fig. 1). The separated signal vector �(t) = [y1(t), · · · , yL(t)]T

is expressed as the following equation:

�(t) =

D−1�
n=0

�(n)�(t − n) = � (z)�(t)

= � (z)�(z)�(t), (6)
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Fig. 1. Configuration of conventional TDICA.

where �(n) is the separation matrix, � (z) is the z-transform of
�(n), and D is the filter length of �(n). In our study, separation
matrix is optimized by minimizing Kullbuck-Leibler divergence
between the joint probability density function (PDF) of �(t) and
the product of marginal PDFs of yl(t). The iterative learning rule
is given by [4]

�
[j+1](n)

= �
[j](n)

− α

D−1�
d=0


{off-diag 〈�(�[j](t))�[j](t − n + d)T〉t}

·�[j](d)
�
, (7)

where α is the step-size parameter, the superscript [j] is used to
express the value of the j-th step in the iterations, 〈·〉t denotes the
time-averaging operator, and off-diag� (z) is the operation to set
every diagonal element of matrix W (z) to be zero. Also, we define
the nonlinear vector function �(·) as

�(�(t)) = [tanh(y1(t)), · · · , tanh(yL(t))]T. (8)

2.3. Problems in conventional ICA

The conventional ICA is basically for extracting each of indepen-
dent sound sources as a monaural signal. In addition, the quality
of the separated sound cannot be guaranteed, i.e., the separated
signals are possible to include any spectral distortions because the
modified separated signals convolved with arbitrary linear filters
are still mutually independent (see Fig. 2(a)). Therefore, the con-
ventional ICA has a serious drawback that the separated sounds
cannot maintain the information about directivity, localization, and
any spatial qualities of each sound source. To resolve the problem
only on the sound quality, modified ICA based on Minimal Distor-
tion Principle has been proposed by Matsuoka et al. [5]. However,
this method is valid for only monaural outputs, and the fidelity of
the output signals as binaural sounds cannot be guaranteed.

3. PROPOSED ALGORITHM; BINAURAL ICA

In order to resolve the above-mentioned problems essentially, we
propose a new blind separation method for binaural acoustic sig-
nals based on BICA. The BICA consists of multiple ICA parts and
Fidelity Controller, and each ICA runs in parallel under the control

ICA
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Fig. 2. Input and output relations in (a) conventional ICA and (b)
proposed BICA.

of the fidelity of the whole separation system (see Fig. 2(b)). The
separated signals of BICA are defined as the following equations:

�ICA1(t) = [y
(1)
1 (t), y

(2)
2 (t)]T =

D−1�
n=0

�ICA1(n)�(t − n)

= � ICA1(z)�(t), (9)

�ICA2(t) = [y
(1)
2 (t), y

(2)
1 (t)]T =

D−1�
n=0

�ICA2(n)�(t − n)

= � ICA2(z)�(t), (10)

where y
(k)
m (t) is the separated signal which extracts the source sig-

nal sm(t) from the observed signal xk(t). In this case, y
(1)
1 (t) and

y
(2)
1 (t) are regarded as the binaural components which correspond

to s1(t), and y
(1)
2 (t) and y

(2)
2 (t) are regarded as the binaural com-

ponents which correspond to s2(t).
As for the fidelity controller, we newly introduce the following

cost function to be minimized,

E

‖ �ICA1(t) + �ICA2(t) − �(t − D/2) ‖2� , (11)

where ‖ � ‖ is Euclidean norm of vector �. If we obtain the inde-
pendent sound sources from Eqs. (9) and (10), and simultaneously
minimize the Eq. (11) to be zero, then we can obtain the appro-
priate separated signals maintaining their binaural properties. To
achieve this, the natural gradient [4] of the cost function with re-
spect to�ICA1(n) and�ICA2(n) should be added in the iterative
learning rule of separation filter given by Eq. (7); thus the new
iterative algorithm of BICA is given by

V - 322

➡ ➡



Microphone
array

  5.73 m 

  3
.1

2 
m

 

Loudspeakers

40

(Height : 1.35 m)

(Height : 1.35 m)

  2.15 m 

  1
.5

6 
m

 

1.15 m

(Room height : 2.70 m)

-30

Fig. 3. Layout of reverberant room used in experiments.

�
[j+1]
ICA1(n)

= �
[j ]
ICA1(n)

− α

D−1�
d=0


{off-diag 〈�(�
[j]
ICA1(t))�

[j]
ICA1(t − n + d)T〉t

+ β〈(�[j ]
ICA1(t) + �

[j ]
ICA2(t) − �(t − D/2))

·�[j ]
ICA1(t − n + d)T〉t} ·�[j ]

ICA1(d)
�
, (12)

�
[j+1]
ICA2(n)

= �
[j ]
ICA2(n)

− α
D−1�
d=0


{off-diag 〈�(�
[j]
ICA2(t))�

[j]
ICA2(t − n + d)T〉t

+ β〈(�[j ]
ICA1(t) + �

[j ]
ICA2(t) − �(t − D/2))

·�[j ]
ICA2(t − n + d)T〉t} ·�[j ]

ICA2(d)
�
, (13)

where α and β are the step-size parameters; α is for the control of
the total update quantity and β is for the fidelity control.

4. EXPERIMENT

4.1. Conditions for experiment
As the preliminary study on the proposed BICA, we carried out the
source separation experiment using a simple microphone array, ne-
glecting the effect of the head-related transfer function (HRTF). A
two-element array with interelement spacing of 4 cm is assumed.
The speech signals are assumed to arrive from two directions, −30◦

and 40◦ (see Fig. 3). The distance between microphone array and
loudspeaker is 1.15 m. Two kinds of sentences, those spoken by
two male and two female speakers selected from the ASJ contin-
uous speech corpus for research, are used as the original speech
samples. Using these sentences, we obtain 6 combinations. The
sampling frequency is 8 kHz and the length of speech is limited
in 3 seconds. The reverberation time of the impulse responses
recorded in the experimental room is 150 ms. The step-size pa-
rameter α is changed from 5.0 × 10−8 to 1.0 × 10−6 and β is
changed from 2.0 × 10−10 to 4.9 × 10−10 to search the optima
which minimize Eq. (11). The length of�(n) is 512, and the ini-
tial value is Null-Beamformer [3] whose directional null is steered
to ±60◦. The number of iterations in ICA is 5000. As for the con-
ventional ICA for comparison, we used Eqs. (12) and (13) in the
case of β = 0.

4.2. Objective evaluation score

In this experiment, three objective evaluation scores are defined.
First, Noise reduction rate (NRR), defined as the output signal–
to–noise ratio (SNR) in dB minus input SNR in dB, is used as the
objective evaluation of separation performance, where we don’t
care the distortion of the separated signal. The SNRs are calculated
under the assumption that the suppressed speech signal is regarded
as noise. The NRR is defined as

NRR ≡ 1

4

2�
l=1

2�
k=1

�
OSNR

(ICAk)
l − ISNR

(ICAk)
l



, (14)

OSNR
(ICA1)
l = 10log10

�
t | H ICA1

ll (z)Sl (t) |2�
t | H ICA1

ln (z)Sn (t) |2 ,

ISNR
(ICA1)
l = 10log10

�
t | All(z)Sl (t) |2�
t | Aln (z)Sn (t) |2 ,

OSNR
(ICA2)
l = 10log10

�
t | H ICA2

ln (z)Sn (t) |2�
t | H ICA2

ll (z)Sl (t) |2 ,

ISNR
(ICA2)
l = 10log10

�
t | Aln (z)Sn (t) |2�
t | All(z)Sl (t) |2 ,

where OSNR
(ICAk)
l and ISNR

(ICAk)
l are the output SNR and the

input SNR for ICAk, respectively, and l �= n. Also, HICAk
ij (z)

is the element in the i-th row and the j-th column of the matrix
	 ICAk(z) = � ICAk (z)�(z). Secondly, in order to evaluate the
sound quality of the separated signal, the Sound Quality (SQ) is
defined as the following equation.

SQ ≡ 1

4

2�
l=1

2�
n=1

SQ
y
(n)
l

, (15)

SQ
y
(1)
1

= 10log10

�
t | A11(z)S1(t) |2�

t | A11(z)S1(t) − H ICA1
11 (z)S1(t) |2 ,

SQ
y
(1)
2

= 10log10

�
t | A12(z)S2(t) |2�

t | A12(z)S2(t) − H ICA2
12 (z)S2(t) |2 ,

SQ
y
(2)
1

= 10log10

�
t | A21(z)S1(t) |2�

t | A21(z)S1(t) − H ICA2
21 (z)S1(t) |2 ,

SQ
y
(2)
2

= 10log10

�
t | A22(z)S2(t) |2�

t | A22(z)S2(t) − H ICA1
22 (z)S2(t) |2 ,

where SQ
y
(n)
l

is the sound quality of separated signal y
(n)
l . The

last evaluation score is Fidelity (F). It is defined as the following
equation,

F =
E[‖ �(t) ‖2]

E[‖�ICA1(t) + �ICA2(t) − �(t − D/2) ‖2]
. (16)

4.3. Results and discussion

Figure 4 (a) shows the result of NRR for different speaker com-
bination. The bars on the right of this figure correspond to the
averaged results of them. In the averaged scores, the deteriora-
tion of NRR in BICA is 0.2 dB compared with the conventional
ICA. From this results, it is revealed that the signal separation per-
formance of the proposed BICA is almost the same as that of the
conventional ICA-based method.

On the other hand, Figs. 4 (b) and (c) show the results of SQ
and F for different speaker combination. The bars on the right of
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each figure correspond to the averaged results of them. In the av-
eraged scores, compared with the conventional ICA, the improve-
ment of SQ is 3.3 dB, and the improvement of F is 31.8 dB. From
these results, it is revealed that the sound quality of the separated
signals in BICA is remarkably superior to that of the conventional
method, especially for the spatial quality and the fidelity of the
sound reproduction.

The whole of the results indicates the followings. (1) In BICA,
the addition of fidelity controller is effective to compensate the
spatial quality of the separated binaural signals. (2) There is no
deterioration in the separation performance (NRR) even with the
additional compensation of sound quality in BICA. Therefore, we
can conclude that the proposed BICA can be applicable to the bin-
aural signal processing and high-fidelity sound reproduction sys-
tem.

5. CONCLUSION

We newly propose a novel blind separation framework for binau-
ral acoustic signals based on the extended ICA algorithm, Binaural
ICA (BICA). BICA is the algorithm to separate the mixed signals
into not monaural source signals but binaurally-heard signals of
independent sources without loss of their spatial qualities. In or-
der to evaluate its effectiveness, separation experiments are car-
ried out using 2 microphones and 2 sources under the condition
that the reverberation time is set to be 150 ms. The experimen-
tal results reveal that (1) the signal separation performance of the
proposed BICA is the same as that of the conventional ICA-based
method, and (2) the spatial quality of the separated sound in BICA
is remarkably superior to that of the conventional method, espe-
cially for the fidelity of the sound reproduction. Therefore, we can
conclude that the proposed BICA can be applicable to the binau-
ral signal processing and high-fidelity sound reproduction system.
The further experiment with HRTF is an open problem.
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Fig. 4. Results of (a) NRR, (b) SQ, and (c) F.
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