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ABSTRACT

This paper describes a closed-form solution for 2 x 2 Instanta-
neous Blind Signal Separation (IBSS) that is based on second or-
der statistics and explicitly exploits the non-stationarity and the
colored-ness (difference between spectra) of the source signals. A
criterion is derived which specifies the requirements on the statis-
tics of the source signals for which the proposed method will work.
This criterion unifies the non-stationarity and colored-ness crite-
ria encountered separately in other work. Moreover, it is shown
that if this criterion is satisfied a condition on the scalar mixing
coefficients can be derived under which the permutation indeter-
minacy is solved. This is very important, since it makes it possible
to predict for which of the two resulting solutions the sources are
permuted. The algorithm is based on the division of available data
into two different time blocks each time the de-mixing system is
estimated. For each block, certain correlation values are computed
that are subsequently combined to provide two separating solu-
tions. One of these solutions provides the sources in the original
order and the other in the reversed order.

1. INTRODUCTION

This paper is concerned with the Blind Signal Separation (BSS)
problem in its simplest form, namely instantaneous BSS. Instan-
taneous Blind Signal Separation (IBSS) deals with the problem of
separating independent sources from their observed instantaneous
mixtures only, while both the mixing process and original sources
are unknown. It is widely recognized that many possible applica-
tions exist for BSS, such as separating speech signals from com-
peting talkers in the so-called “cocktail party” problem, removing
additive noise from signals (including images), revealing indepen-
dent sources in different kinds of biological signals like EEG’s and
MEGs, etc.

Until recently, most BSS algorithms employing second order
statics only were based on the assumption of stationary mutually
uncorrelated sources. Most methods try to decorrelate the out-
put signals for different lags, thereby exploiting the spectral differ-
ence between the sources (colored-ness). However, nowadays it is
recognized by several authors that also the non-stationarity of the
source signals is something that can and must be exploited (see for
example [1] and [2]).

In this work, a closed-form solution for 2 x 2 Instantaneous
Blind Signal Separation (IBSS) based on second order statistics is
developed, which explicitly exploits both the non-stationarity and
the colored-ness of the source signals. A criterion is derived which
specifies the requirements on the statistics of the source signals for
which the proposed method will work. This criterion unifies the
non-stationarity and colored-ness criteria encountered very often
separately in other work on BSS. Moreover, it is shown that if the
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mentioned criterion is satisfied a condition on the scalar mixing
coefficients can be derived under which the permutation indeter-
minacy is solved.

In Section 2 the considered mixing model is explained to-
gether with the adopted de-mixing structure. Section 3 presents
the estimation of the de-mixing system by means of closed-form
formulas. In Section 4 the requirement on the source signals for
which the proposed method will work, as well as a condition for
solving the permutation indeterminacy in 2 x 2 IBSS is derived.
The practical implementation and simulation results are discussed
in Section 5. Finally, Section 6 presents the conclusions.

2. INSTANTANEOUS 2 x2 MIXING MODEL

The following instantaneous mixing model is considered:

(o) =(or ey (o) o

which can shortly be written as z[n] = As[n].

Because scalings of the columns can be absorbed by the sources,
without loss of generality the following simplified mixing model
is discussed in the remainder of the paper:

(2= )(a) e

where a and b are unknown mixing constants. It is assumed that
a # 0 and b # 0 because either of these cases corresponds to the
situation that one of the sensor signals contains only the contribu-
tion from one source, which makes the problem trivial.

If the mixing matrix would be known, the original source sig-
nals could be obtained by computing s[n] = A~ z[n]:

sifn] \ _ 1 1 -—a z1[n] 3)
sa[n] ) 1—ab\ —b 1 z2[n]
Subsequently, it is be assumed that 1 — ab # 0. If this assumption
is not satisfied, A is not invertible and the source signals cannot be
recovered, even in case A is known. Motivated by this form of the

inverse system, the estimates y1[n] and y2[n] of the source signals
are computed by:

(wbd)=m=as (5 T) (o)) @

where « and (3 are de-mixing constants that have to be estimated.
It can easily be shown (consider equation (19)) that two separating
solutions exist, given by:

(o, B0) = (—a, —b) (5a)
(@, 8p) = (=3, —2) (5b)
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The solution (., 3,) corresponds to the situation that the sources
are recovered in the right order, i.e. without permutation of the
sources at the outputs (y: is an estimate of s; and y2 is an esti-
mate of s2). The solution (ay, 3p) corresponds to the situation
that the sources are permutated (y; is an estimate of sz and ys is
an estimate of s7).

3. ESTIMATION OF DE-MIXING SYSTEM

In order to estimate the de-mixing constants « and /3, it is as-
sumed that s; and sz are zero-mean statistically uncorrelated non-
stationary real-valued processes, such that:

Ts;s;im,n) =0 ¥V m,n (6)

where 75, [m,n] £ E{si[m]s;[n]}, i,j = 1,2. The unknown
de-mixing constants are estimated by applying the same criterion
to the estimated source signals y1 and y2:

rye[mon] £ E{yilmlye[n]} =0V mon (D)
Substituting equation (4) into equation (7) yields:

(1_O‘ﬂ)2ry1y2 [m, n] = afreye, [m7 n] + ATaya, [m7 n]
+ Breyzy [M,n] +r2yay[m,n] =0 ¥V m,n (8)

where 1,0, [m,n] = E{xi[m]x;[n]} fori,j = 1, 2. Each equa-
tion represents a hyperbolic set of solutions.

In the next sections, it will be shown that solving a system
consisting of two of these nonlinear equations for two different
sets of time indices yields the two separating solutions given in
equations (5a) and (5b). Experiments have revealed that for many
real-world signals, such as speech, only two equations provide al-
ready enough information to solve the problem with good quality
(see Section 5), i.e. the equations are independent enough.

Combining two equations, one with time indices [m,n] and
the other with [k, {], and eliminating (3 results in a second order
polynomial in the variable « (it is equally well possible to obtain
a polynomial in 3 by eliminating o):

p2a® 4 pra+po =0 ©)

where the coefficients p; with ¢ = 0, 1, 2 are given by:

Po = Tzya, [m, n]rmﬂcz [k7 l] —Teyzy [kv l]rxlﬂcz [m7 n] (10a)
D1 = (T, [M, N]reyay [k, 1] = Tagay [k, e 2, [m, n))
+ (Tzlzl [mv n]rwzz [kv l] —Tzyay [kv l]rﬂvzw [mv n]) (IOb)

D2 = Tagzy (M, NTegus [k, 1] — Tagay (B, reyes [m, n] (10c)

The discriminant of equation (9) is defined as: D £ p? — 4popo.
If p2 # 0 due to the non-stationary character of the sources and
if D > 0, two real solutions exist for «.. These solutions can be
computed by completing the square for equation (9), resulting in:

=221 /D (11
2p2 2\ p3

Once the solutions for o have been computed, the corresponding
solutions for 3 can be computed by summing the two equations
used to derive equation (9) and solving for j3:

ﬂ(oz) — (Tﬂczﬂcz [m7 n] +T902902 [k7 l])Oé-i-(’f‘xlxz [m7 n] +T901902 [k7 l])
(Tagwy [My N+ 7000, [k, 1)t (o oy [My 0]+ 70,2, [k, 1])
It can easily be verified that 8(—a) = —b and 3(—7) = —1.

Hence, another way to compute 31 2 3(a1) and 32 2 B(az) is:

Bi=Pl) =55 and B2 =fla) = - (12)

4. NON-STATIONARITY REQUIREMENT AND
PERMUTATION

This section has multiple objectives. First, a criterion is derived
which specifies the requirements on the statistics of the source sig-
nals for which the proposed method will work. This criterion uni-
fies the non-stationarity and colored-ness criteria encountered sep-
arately in other work on blind signal separation. Next, it will be
proven that the solutions given in equation (11) are the separat-
ing solutions. Finally, the required amount of a priori knowledge
about the two mixing coefficients, that is necessary for solving the
permutation indeterminacy, is derived.

4.1. Non-stationarity requirement

To start the derivations, the relevant quantities for examining the
solutions in equation (11), namely po, p1, p2 and D, are expressed
in the source correlation functions:

po = a(l — ab) ¥s[k,l,m,n] (13a)
p1 = (1 —ab)(1+ adb) sk, I, m,n] (13b)
p2 = b(1 — ab) ¢¥s[k, 1, m,n] (13¢)
D = (1 — ab)*¢2[k, 1, m,n] (13d)

where N
Ps [kv L,m, n] =Tsy1s1 [m, n]r3232 [kv l] — Tsysy [k7 l]r3232 [m, n]

From these equations it is clear that if the assumptions in Section
1 are satisfied (i.e. a # 0,b # 0,(1 — ab) # 0), the condi-
tion for having a non-degenerate polynomial in equation (9) is that
Ys[k,l,m,n] # 0, or:
Tsys, [M, 1] Tsys, [k, ]
Tsgsa [k, 1]

This equation means that the source signals must be either non-
stationary, or stationary but differently colored (or both) in order
to be able to achieve source separation. In other words, the source
correlation functions must not be scaled versions of each other.
This requirement on the source correlation functions is a gener-
alization of the one mentioned in [2] and [3]. There, only time-
varying (non-stationary) autocorrelations are considered resulting
in the following non-stationarity criterion:

E{stm]} 2 E{si[n]}
E{s3lm]} © E{s3[n]}’
This equation says that if the ratio of source powers varies in time,
it is possible to achieve separation using decorrelation.
When the source signals are stationary, the criterion reduces to:

[m,n] # [k, 1] (14)

Tsas2 [m7 n]

m#n (15)

Tsys, [T1] Tsys, [T2]
Tsps5[T1] Tsgss[T2]’
where 7,5, [T] = E{si[k]si[k — 7]}. Hence, in this case it is still
possible to achieve separation if the source correlation functions
are not scaled versions of each other (i.e. the spectra are different).
From the above, it can be concluded that the general crite-
rion in equation (14) unifies the non-stationarity and colored-ness
criteria encountered separately in other work on blind source sep-
aration (only a few papers exploit both criteria simultaneously, see
for example [4]).

T # To (16)

4.2. Separating solutions and permutation indeterminacy

In order to prove that the two possible solutions for the de-mixing
constant « given in equation (11) are the separating solutions, they
are expressed in the source correlation functions using equations
(13a) through (13d). The first solution becomes:
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al:_p_1+1 D {|1 ab (1+ab)} (17)
2p2 2\ p2 2 |b] b
For this expression two different situations can be discerned. Firstly,
if (1 — ab) and b have the same sign, expression (17) yields a1 =
—a, which means that the estimated sources computed with so-
lution (a1, 31) are in the right order: (a1, 1) = (co,3o). Sec-
ondly, if (1 ab) and b have different signs, equation (17) results in
a1 = — 7, which means that the estimated sources corresponding

to (an, 1) are permuted: (a1, B1) = (ap, By).
Likewise, the second solution given in equation (11) becomes:

1 [D 1fp—abl  (1+ab)
T o, T2\ T 2{ IR (1%

Again, two different cases can be distinguished. Firstly, if (1 — ab)
and b have the same sign, expression (18) yields a2 = — %, which
means that the estimated sources computed with solution (a2, 32)
are permuted: (a2,32) = (ap,Bp). Secondly, if (1 — ab) and
b have different signs the expression results in a2 = —a, which
means that the estimated sources corresponding to (2, 32) are not
permuted: (a2, B2) = (o, Bo)-

In summary, the results derived above can be formulated as:

1. If (1 — ab) and b have the same sign: (a1, 81) = (o, Bo)
and (a2>ﬂ2) = (apvﬁp)

2. If (1 — ab) and b have different signs: (a1, 81) = (ap, Bp)
and (a2, B2) = (v, o)

For situation 1 two possibilities exist: (1 —ab > 0Ab > 0) =
(a<3Ab>0)and(1—ab<0Ab<0)=(a<tAb<DO).
Hence, the statement that (1 — ab) and b have the same sign can
also be formulated as: (¢ < ¢ A b # 0). In a similar way, for
situation 2 the statement that (1 — ab) and b have different signs
can be formulated as: (a > ¢ Ab # 0).

Hence, we can conclude the following (omitting the condition b # 0
because this is an initial assumption):

o Ifa< %: (al,ﬁl) = (ao,ﬁo) and (CYQ,ﬁQ) = (apaﬁp)

o Ifa> g (a1, /1) = (ap, Bp) and (a2, B2) = (o, o)
In words this means the following (assuming that a # % which is
equivalent to (1 — ab) # 0):
Ifa < %, then the output signals computed with solution (o1, 51)
are in order and the output signals computed with solution (a2, 32)
are permuted and vice versa.
This statement is very important since it solves the permutation
indeterminacy under the given required knowledge about the rela-
tionship between the mixing coefficients a and b.

The shaded area in Figure 1
indicates the points (a,b) where
a < 3 (a vertical and b horizon-
tal). For example, if it is known
that 0 <a<land 0<b<1 (see
box in figure), this implies that
a< % and thus the output signals
computed with solution (a1, 81)
are always in the right order. In-
tuitively, this can be understood
in the following way: 0 < a <1
means that at sensor 1 source 2
is weaker than source 1, and vice
versa for 0 < b < 1, hence it must be possible to exploit this knowl-
edge to reconstruct the sources in the desired order.

Fig. 1. Area where a < 1/b

With the described method, using different sets of (two blocks of)
data from the same set of mixtures always results in the same per-
mutation. For example, if two data blocks of the available data
set are used to compute the solutions and solution (a1, 31) yields
output signals that are in the right order, the same holds for the
solutions given by two other data blocks of the same data set.

5. IMPLEMENTATION AND SIMULATIONS

The implementation of the algorithm in batch mode is very straight-
forward. First, two different pairs of time indices [m, n] and [k, []
are chosen and then the sensor correlations required for comput-
ing the p;’s are estimated by means of time averaging over block
length P:

P-1 -
1,7 =1,2
Printe)™ Ll sl 41 e o)

The block size P must be chosen large enough such that tempo-
ral correlations between s1[m] and s2[m] are approximately zero.
The pairs [m, n] and [k, [] must be chosen in such a way that equa-
tion (14) is satisfied. For example, if it is desired to exploit both
the non-stationarity and the colored-ness of the source signals, the
pairs [m, n] and [k, {] must be far enough apart (to exploit the non-
stationarity), and m # n or k # [ in order to exploit the colored-
ness. Once the sensor correlations have been computed, po, p1 and
p2 are computed by means of equations (10a), (10b) and (10c).
Subsequently, the two possible solutions for the de-mixing param-
eter o are computed with equation (11). Finally, equation (12) is
used to compute the corresponding values of 3.

For the simulations, two speech signals sampled at 8 kHz (see
Figures 2a and 2b) are mixed according to equation (2). The used
parameter values are: P = 2000,m = 1,n = m,k = m + P
and [ = k + 5. Since the source signals are artificially mixed, the
known values of a and b can be used for the evaluation. For each
of the two possible solutions, the total transfer 7" from sources to
outputs is computed according to equations (2) and (4), where the
scaling factor 7 o8 is excluded for convenience:

a+« ) (19)

Té(l a)(l a)_(1+ab
“\B8 1 )\b 1)\ B+b 1+4ap

The separation quality for each solution is defined as:

max;|ti;

7 min; |t1] |

where t;; withi,7 = 1,2 denotes the ijth element of matrix 7"

Several values for a and b were tested and in all cases the al-
gorithm performed very well. The simulation results for (a,b) =
(—0.52,0.75) will now be presented in more detail. Since a < 7,
according to the statement made in the previous section, it is ex-
pected that the output signals computed with solution (a1, 51) are
in the right order and the output signals computed with solution
(a2, B2) are permuted, i.e. (a1, 51) = (®o, Bo) and (a2, B2) =
(Oé;m ﬁp)

The algorithm gives the following results. The first solution
(a1,61) = (0.508,—0.749), which indeed corresponds to the
solution in equation (5a): (a1,01) = (o, B,). The second so-
lution (a2, B2) = (—1.319, 1.943) corresponds to equation (5b):
(az2,82) =~ (ap,Bp). Substituting these solutions into equation
(4), the corresponding set of output signals is computed for 10000
samples (only 2P samples are used in the estimation process). Fig-
ure 2 plots all relevant signals. Figures (a) and (b) show the source
signals s1[n] and s2[n], whereas (c) and (d) show the mixtures
z1[n] and z2[n]. The vertical dotted lines in Figures (c) and (d)
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Fig. 2. si[n], s2[n]: source signals, x1[n], z2[n]: mixtures, y11[n], y12[n]: estimated sources obtained with (a1, 81), y21[n], y22[n]:

estimated sources obtained with (a2, 82)

indicate the data blocks used for processing. Figures (e) and (f)
show the output signals y11[n] and y12[n] corresponding to solu-
tion (a1, 1), while (g) and (h) show the output signals y21[n]
and y22[n] corresponding to solution (a2, 32). The separation
quality for solution (a1, 81) is Q(T1) = 528 and for (a2, 82)
is Q(T2) = 218. It must be remarked that the quality measuring
values are very specific to the chosen block positions. However,
experiments reveal that in almost all cases these values are larger
than 50. The figures also reveal that the scaling of the outputs cor-
responding to the solution that is not permuted (y11 and yi2) is
correct, as expected from equations (3) and (4).

6. CONCLUSIONS

A closed-form solution has been presented for the 2 x 2 Instan-
taneous Blind Signal Separation (IBSS) problem. The algorithm
is based on second order statistics and explicitly exploits the non-
stationarity and the colored-ness (difference between spectra) of
the source signals. A criterion has been derived which specifies
the requirements on the statistics of the source signals for which
the proposed method will work. This criterion unifies the non-
stationarity and colored-ness criteria encountered separately in other
work on BSS. Moreover, it has been shown that if the criterion is
satisfied a condition on the scalar mixing coefficients can be de-
rived under which the permutation indeterminacy is solved using
the proposed method. This is very important, since it makes it pos-
sible to predict for which of the two resulting solutions the sources
are permuted. The algorithm is based on the division of (a part
of the) available data into two different time blocks for each time
the de-mixing system is estimated. For each block, certain cor-
relation values are computed that are subsequently combined to
provide two separating solutions. One of these solutions provides

the sources in the original order and the other in the reversed or-
der, i.e. the sources are permuted at the outputs. The algorithm
has been evaluated for different values of the mixing constants and
different speech input signals, from which it can be concluded that
the separation quality is very good in all cases and that the per-
mutation of the sources is predicted correctly when it is known
that the derived condition is satisfied. From the experiments, it
can also be concluded that for many real-world signals, such as
speech, only two equations provide already enough information to
solve the problem with good quality, i.e. the equations are inde-
pendent enough. Since the solution to the IBSS problem becomes
very simple in this case, it follows that it may not always be neces-
sary to resort to more advanced methods solving many nonlinear
equations simultaneously.

7. REFERENCES

[1] D.Pham and J.-E. Cardoso, “Blind separation of instantaneous
mixtures of nonstationary sources,” IEEE Trans. Signal Pro-
cessing, vol. 9, no. 9, pp. 1837-1848, 2001.

[2] K. Matsuoka, M. Ohya, and M. Kawamoto, “A neural net for
blind separation of nonstationary signals,” Neural Networks,
vol. 8, no. 3, pp. 411-419, 1995.

[3] S. Choi and Y. Lee, “Nonstationary source separation,” Proc.
IEEE Region 10 Conf., vol. 1, pp. 670-673, 1999.

[4] S. Choi, A. Cichocki, and A. Belouchrani, “Blind separa-
tion of second-order nonstationary and temporally colored
sources,” IEEE Proc. 11th Signal Processing Workshop on
Statistical Signal Processing, pp. 444-447, 2001.

V -320




