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ABSTRACT

The independent component analysis (ICA) with a single
quadratic constraint on each source signal or column of the
mixing matrix is extended to the case of multiple quadratic
constraints. The criterion of Joint Approximate Diagonalization
of Eigen-matrices (JADE) is used to measure the statistical
independence. A new algorithm is derived to maximize the
JADE criterion subject to the multiple quadratic constraints,
using the augmented Lagrangian method. The extension offers
the freedom to design various combinations of quadratic
constraints. Examples include simultaneously constraining a
source signal and the corresponding column of the mixing
matrix, and two-sided constraints on the source signals or
columns of the mixing matrix. Example results are provided to
demonstrate the effectiveness of the agorithm.

1. INTRODUCTION

Independent Component Analysis (ICA) [1-2] is an important
technique to solve the problem of blind source separation when
the sources can be assumed to be mutually independent. ICA
usually works in a totally blind way, employing no additional
information about the sources or the mixing process other than
the independence assumption. However, there exist situations
where such additional information is available or circumstances
under which it is desirable to perform ICA in aregion of interest,
instead of in the complete signal space. For example, ICA can be
used to learn the functional genomic units (FGU) from DNA
microarray signals[7-8]. Thisislearning from data. On the other
hand, knowledge about FGUs can a so be learned from books or
by consulting with human experts. This is learning from experts.
Can we learn FGUs simultaneously from data and experts?
Motivated by this and other examples, we introduced in [3] the
idea of incorporating quadratic constraints into ICA and
developed agorithms to implement ICA subject to a single
quadratic constraint on each source signal or column of the
mixing matrix. The choice of quadratic constraintsis due to their
ability to code the (normalized) correlation between a source
signal (or the corresponding column of the mixing matrix) and a
constraining vector, which offers the versatility of representing
the expert knowledge about FGUs or the signal subspace that is
of interest.

Though the single constraint offers the device of employing
additional information in ICA, it has limitations in the freedom
of constructing the constraints. In this paper we extend the work
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in [3] to the case where multiple quadratic constraints are used
in place of the single congtraint. The extension offers the
freedom to design various combinations of quadratic constraints.
Examples include simultaneously constraining a source signal
and the corresponding column of the mixing matrix, two-sided
constraints on the source signals or columns of the mixing
metrix, and combinations of both.

The criterion of Joint Approximate Diagonalization of
Eigen-metrices (JADE) is used to measure the dtatistical
independence. A new algorithm is derived to maximize the
JADE criterion subject to the multiple quadratic constraints,
employing the augmented Lagrangian method. Example results
are provided to demonstrate the effectiveness of the algorithm.

2. PROBLEM FORMULATION

The ICA with multiple quadratic constraints is formulated as
N
y(t) =As(t) = 3 s, ()3, (1-A)
k=1

subjectto a;F,,a, <0, k=12:-,N, m=12-,M, (1-B)
5G, .8 <0,k=12,N, m=12,--,M, (1-C)

where in - (1-A),  y(O) =[y,(t) Y,(1) -y, (O]
dimensional zero-mean and stationary  mixed-signals,
S(t) =[s,(t) s,(t) ---s,(1)]" ae N dimensiona statisticaly
independent source signals with at most one of its components
Gaussan, A =[a, a, --- a,], with a, =[a, a, - a,,]", is
the mixing matrix with full column rank, and t is an index for

time or other relevant variables. In (1-B,C),
s, =[s. () s.(2) --- s(T)] with T the number of samplesin t,

Fem With k=12---,N and m=12.-,M,, and G, with
k=12---,N and m=12.---,M,, are assumed, respectively,

to be NgxNy and TXT Hermitian constraining matrices, and the
superscript H denotes conjugate transpose.

To solve (1), we start with deriving its whitened form. Let
the whitened form of (1-A) be[2]

z(t) = Us(t) @

ae N

where

z(t) =My(t) (©)
are the whitened mixed signals, M is a NxN, whitening matrix of
full row rank, and

U=MA (4)
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is the unitary factor of A. M can be estimated from y(t) via
eigenvalue decomposition [2] or singular value decomposition
[1]. Let U=[u, u, --- uy], and it follows from (4)

a, =M*u,, k=1,2,---,N (5)
where the superscript # denotes pseudo inverse. Similarly it
follows from (2)

s, =u'Z ()
where s, is as defined in (1-C) and Z=[z(1) z(2) ... z(T)].
Substituting (5) into (1-B), and (6) into (1-C), we obtain for
k=12,--,N,

ufB, U, <0, m=12--,M (7
where M =M, +M,, and
(M#)HFkva#’ when r‘|’]::]_'2'...'|\/|1 (8)
km — ZGk,m—Mle, when m= M1+L M1+2’...’M

(2) subject to (7) gives the whitened form of (1).
The solution of (2) subject to (7) is based on constrained
maximization of the JADE criterion, which is defined as[2]

JADEU) =3 S 1urQ,0)u, f  (10)

k=1 r=1
where D,, r=1, 2, ..., N2 congtitute a set of orthonormal bases
for the space of NxN matrices, Q4(D;) is the cumulant matrix
defined element-wise as
N
[Q.(D,)]; = D cumz (1), 7 (1), z,(1), Z,()]d}y) (11)
p.a=l
cum( ) denotes the cumulant, * denotes complex conjugate, and
d{) isthe (p,q)-th element of D.

Now, with the JADE criterion, solving (2) subject to (7)
becomes a problem of maximizing JADE(U), or equivalently,
minimizing —JADE(U), subject to (7), the solution of which is
developed in section 3.

3. ALGORITHM

In the subsequent sections, we abbreviate Q,D;) in (10) as Q,
for notational simplicity and assume that all eigen vectors
discussed have unit L, norm. Our agorithm solves for each

column of U separately. Each time we find a column, say u,,

N2
that minimizes - " |u;'Q,u, [ under the constraint that U, has

unit norm and is orthogonal to al columns found previously.
Specifically, we have a constrained optimization problem

NZ
u, =argmin(=_uyQ,u, ) (12-A)
st. ufu, =1 (12-B)
uu, =0, 1=12, k-1 (12-C)
U By nl <0, m=12,--,M (12-D)

We use the orthogona-projection-based idea [4] to
diminate the constraints in (12-C). Denote the N-by-N identity

matrix as |, . Let U, =[u, u, --- u,,]. Then U U, =1,
which is aresult of uy, uy, ..., U, satisfying (12-B,C). Denote

Qk—l = span{ul, u,, "'ruk—l} ., and QE—].
complement of Q,_, . We construct

Pk =1 N UH(UkHﬂU k71)71U371 =1 N kalu :'71 (13)
which is the matrix of the orthogonal projection onto Q. . The

the orthogonal

orthogonalization of columns of E’k gives Py, which satisfies
P'P =1,y L&t u, =Pw,.Clearly u, 0Q., and therefore
satisfies the constraints in (12-C). Moreover, the constraint (12-
B) implies that (P.w,)" P,w, =1, which, using P'P, =1_.,,
is reduced to w;'w, =1. Thus, we have a dua problem to (12)

in Q/, as

u, =Pw, (24-A)
NZ
w, =argmin(=)_|w;'R'Q Rw, [) (14-B)
st. wlw, =1 (14-C)
wi'C,,w, <0, m=12---M  (14-D)
where

Ck,m = PkH Bk,mPk (15)

We now solve (14-B,C,D) using the Lagrangian multiplier
method. We do a partial elimination of the inequality constraints
(14-D) via means of penalty, in accordance to which, the
augmented Lagrangian function for (14-B,D) is[6]

N
Lc(Wk |{/um}) = _Z“ Wl:‘ PkH QrPka |2
1w = (16)
+ Ez[(max{ov lum + CWI': C:k,mwk})2 - ﬂlf]]
m=1
where ¢ is a positive penaty parameter. With the inequality
constraints (14-D) eliminated, the problem of (14-B,C,D) can be
approximated as
w, =minL (W, {£,}) (17-A)
st. wiw, =1 (17-B)
the Karush-Kuhn-Tucker (KKT) optimality conditions for which
are (17-B) together with
aL(:(Wk ’*{lum}) - A a . (W:jwk _1) (18)
ow, ow,
where we have used the definition in [5] for differentiation with
respect to complex vectors. (18) is evaluated to give

1 M
[T, + 5= D (W] Ry (€ W W)
m=1

(19)
XRy i (C ty W)W, = AW,
with the matrix function I, (.) defined as
_ENZ HpH HAH
r.(p)= 2;[(15 P Q.RB)P QP (20)
+(B"R'Q'PBIPQ.RI
and R, (.,.,.) defined as
+cC, ,, if u+cp"C, B>0
Rk,m(c,u,ﬂ):{”' o AR CABZO 1)
0, otherwise

Equations (17-B) and (19) imply that at the stationary point w,
is an eigenvector of
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T, (e} w,) = T, (w,)

1y (22)
+ ZCZ(Wk Rk,m(C’/um'Wk)Wk)Rk,m(C'/'[m'Wk)
m=1

with the associated eigenvalue

A=L(w{u}) (23)
which is equal to the objective function in (17-A). Therefore the
optimal eigenvector w, for (17) should be associated with the

smallest eigenvalue of fk(c,{um},wk), to minimize the

objective function. We utilize the aternating eigen-search
agorithm [3] to solve the eigenvalue problem of (19) subject to
(17-B).

It is known from the Lagrangian multiplier theory [6] that
when {,} are close to the true Lagrangian multipliers of (14-
B,D), or the penaty parameter ¢ approaches infinity, then
unconstrained minimization of (16) well approximates (14-B,D).
However, a penalty parameter approaching infinity will lead to
severe ill-conditioning for most minimization agorithms.
Fortunately, a whole theory called the augmented Lagrangian
method [6] exists for iteratively adjusting {p} such that { i}
will converge to the true Lagrangian multipliers of (14-B,D),
with a sufficiently large but not infinite penalty parameter c.
Thus, upon convergence of {.}, the eigenvector solution of
(17) well approximeate the solution of (14-B,C,D).

Therefore, we have the following overall method to solve
(14-B,C,D). Use the augmented Lagrangian method [6] to
produce a sequence {4} . For any fixed i, use the alternating
eigen-search algorithm [3] to solve (17). Upon convergence of
{19}, the solution of (17) approximates the solution of (14-

B,C,D). Theoveral agorithmisgiven as:

Algorithm 1: Augmented Lagrangian with Alternating
Eigen-search (ALAE)

Step 1: Define the convergence parameters &, =0 and
£,20, and a constant a>1. Choose a moderate initial penalty
parameter cM>0. Initialize the multipliers £® >0, m=1,2,...,M.
Initidize w®OC"** such that w®#0, and let
WO = w® | JOTWE . Leti=L

Step 2: Let w@ =w!™ andlet j=1.

Step 3: Find the minimum eigenvalue, denoted AV, of
T, (c” {xV},wPU™)  and denote the associated eigenvector
with unit L, norm as w{

Step 4: Check convergence of AV . If [P -0 kg,
let wi =wPD and go to Step 5; otherwise, let j=j+1 and

go back to Step 3.
Step 5: Update the multipliers. Let
L5 =max{0, 4f) +c(w )" C, W}, mEL2,... M.

Step 6: Update the penalty parameter. Let ¢ = ac® .
Step 7: Check convergence of the multipliers. |If
LD =g )| =8 |>1 for any 1<smsM, exit the

m m

algorithm and return “no feasible solution”; otherwise, if

| 1) = 1S ks g, for m=1,2,...,M, exit the algorithm and return

m

w( asthe solution; otherwise, let i=i+1 and go back to Step 2.

4. APPLICATION AND EXAMPLE RESULTS

ICA has been used to model narrow-band antenna array signas
[2] and DNA microarray signals [7-8]. The quadratic constraints
(2-B,C), when applied to these two types of signas, have
interesting interpretations from their respective fields. For the
antenna array signals, Fyn,'s specify the desired range of
direction-of-arrivals (DOA) of the sources and Gy, s specify the
approximate envelopes of the source signals. For DNA
microarray signals, Fy,'s and Gypn's are used to encode the
expert knowledge on the constituent genes in each functional
genomic unit (FGU) and the responses of each FGU to the
experimental conditions, respectively. Here a FGU is defined as
a set of genes that operate collectively to effect a biological
function [8]. Because of the space limit, we only present here the
example results on DNA microarray signals.

We now briefly explain how we construct Fy,'s and Gy y,'S.
Assume y(t) in (1) are the DNA microarray signals, then [a; |
defines the membership of the i-th gene belonging to the k-th
FGU and s(t) is the response (expression levels) of the k-th
FGU to the t-th experimental condition [8]. From the expert
knowledge (human experts, books, Gene Ontology (GO) [8],
etc.), we can build an approximate and incomplete FGU
subsuming a subset {i,,i,,...,i,} of its constituent genes. Let the

approximate memberships of these partial genes be |a, |,
i =i;i,,...,i_ . Construct a constraining vector w, to be of the
same dimension as g and with its i-th element equal to |a, |’
for i =iy,i,,...,i, and zero for others. Let wy to be normalized to
unit L, norm. The constraint on ayis constructed as

_aldiag(w,)a, & &
corr, =% 908 [ =S w, la P /Sla P20 (24

with corr; the non- normalized correlation between w, and

Def .
la, [ =[lay i lay P, - |2y F17, and pthe threshold.
Comparing (1-B) and (24), we have
Fk =pl No diag(Wk) (25)
The construction of Gy,'s can be implemented in a similar
way. From expert knowledge, we build the approximate
responses S(t), t=t,t,,..,t., of a GFU to a subset of
experimental conditions {t,,t,,...,t.} . Construct w, to be a
vector of the same dimension as s, and whose t-th element equal
to S (t) for t=t,t,,...t. and zero for others. Let wy be
normalized to unit L, norm. The constraint on s.is constructed as
corr, =|swy F/lls, IF =swiw,s!/ss! 2 p  (26)
with corr, the square of normalized correlation between wy and
S« and pthe threshold. Comparing (1-C) and (26), we have
G, = —ww, (27)
We simulate the true responses s(t)=[si(t) s)(t) sx(t)]",
t=1,2,...,300, of three FGUs to 300 experimenta conditions and
a 126-by-3 mixing-matrix A. s(t) are then mixed by A to yield
the expression levels y(t) of 126 genes. Various levels of noises
are added to y(t). The expression levels are in logarithm, with
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zero denoting the expression levels under the normal conditions,
and positive and negative values denoting increases and
decreases, respectively, in expression levels, due to the effects of
experiments.

The ICA and constrained ICA are performed on the noisy
gene expression levels (microarray signals) y(t) to extract the
FGUs' experimental responses s(t) and the mixing matrix A. The
threshold p in the constrained ICA is adaptively chosen to
achieve the best match between Ja? or s(t) and their respective
constraining vector wy, with the match quantitatively measured
by corr; or corr,. The errors of the estimates of A and (t) are
averaged over 200 Monte Carlo runs to yield the mean squared
errors (MSE), which are plotted as a function of signal to noise
ratio (SNR) in Fig.1 and Fig.2, respectively.

The constraining vectors wy/s are designed such that they
contain 3 peaks of the true [a or s(t), with the magnitudes
randomly changed by 20% from the corresponding true ones.
There are more than 10 peaks in each simulated [a,? and s(t), on
average. Therefore the expert knowledge covers less than 30% of
the total information. This amount of expert knowledge, small
though it is, contribute significantly to the improvement in the
estimates of both A and s(t), compared with the ICA results
(which do not use the expert knowledge), as seen from Fig. 1
and Fig. 2. It is aso shown in these figures that the ICA with
double constraints simultaneously imposed on Ja? and sg(t)
achieve the top performance. This is natural because the double
constraints provide expert knowledge on both Ja? and s(t). The
performances of the ICA with a single constraint on |a ? or s(t)
stand in the middle, as the single constraint provides only half
the expert knowledge that is provided by the double constraints.

5. CONCLUSIONS

We have extended the singly quadratically constrained ICA to
multiply quadratically constrained ICA. Using the JADE
criterion as the measure of statistical independence, we have
derived a new agorithm to perform the multiply quadratically
constrained ICA, based on the augmented Lagrangian method.
As an application example, we implemented the scheme of
learning functional genomic units simultaneously from data and
from experts, via the constrained ICA. Numerical results show
that significant improvements in the estimates of both A and s(t)
can be obtained from the use of expert knowledge and that
double constraints achieve the top performance as a result of
their ability of coding more expert knowledge than the single
constraint.
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Fig. 1 Mean sguared errors (M SE) of the estimates of A asa

function of signal to noiseratio (SNR). All values are shown

in decibels. Circle: ICA; Square: 1CA with simultaneous
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Fig. 2 Mean squared errors (M SE) of the estimates of s(t) asa
function of signal to noiseratio (SNR). All values are shown
in decibels. Circle: ICA; Square: 1CA with simultaneous
constraints on [a and s(t); Star: 1CA with single constraint
on s(t); Triangle: ICA with single constraint on |a.
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