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ABSTRACT

The independent component analysis (ICA) with a single
quadratic constraint on each source signal or column of the
mixing matrix is extended to the case of multiple quadratic
constraints. The criterion of Joint Approximate Diagonalization
of Eigen-matrices (JADE) is used to measure the statistical
independence. A new algorithm is derived to maximize the
JADE criterion subject to the multiple quadratic constraints,
using the augmented Lagrangian method. The extension offers
the freedom to design various combinations of quadratic
constraints. Examples include simultaneously constraining a
source signal and the corresponding column of the mixing
matrix, and two-sided constraints on the source signals or
columns of the mixing matrix. Example results are provided to
demonstrate the effectiveness of the algorithm.

1. INTRODUCTION

Independent Component Analysis (ICA) [1-2] is an important
technique to solve the problem of blind source separation when
the sources can be assumed to be mutually independent. ICA
usually works in a totally blind way, employing no additional
information about the sources or the mixing process other than
the independence assumption. However, there exist situations
where such additional information is available or circumstances
under which it is desirable to perform ICA in a region of interest,
instead of in the complete signal space. For example, ICA can be
used to learn the functional genomic units (FGU) from DNA
microarray signals [7-8]. This is learning from data. On the other
hand, knowledge about FGUs can also be learned from books or
by consulting with human experts. This is learning from experts.
Can we learn FGUs simultaneously from data and experts?
Motivated by this and other examples, we introduced in [3] the
idea of incorporating quadratic constraints into ICA and
developed algorithms to implement ICA subject to a single
quadratic constraint on each source signal or column of the
mixing matrix. The choice of quadratic constraints is due to their
ability to code the (normalized) correlation between a source
signal (or the corresponding column of the mixing matrix) and a
constraining vector, which offers the versatility of representing
the expert knowledge about FGUs or the signal subspace that is
of interest.
        Though the single constraint offers the device of employing
additional information in ICA, it has limitations in the freedom
of constructing the constraints. In this paper we extend the work

in [3] to the case where multiple quadratic constraints are used
in place of the single constraint. The extension offers the
freedom to design various combinations of quadratic constraints.
Examples include simultaneously constraining a source signal
and the corresponding column of the mixing matrix, two-sided
constraints on the source signals or columns of the mixing
matrix, and combinations of both.
         The criterion of Joint Approximate Diagonalization of
Eigen-matrices (JADE) is used to measure the statistical
independence. A new algorithm is derived to maximize the
JADE criterion subject to the multiple quadratic constraints,
employing the augmented Lagrangian method. Example results
are provided to demonstrate the effectiveness of the algorithm.

2. PROBLEM  FORM ULATION

The ICA with multiple quadratic constraints is formulated as
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the mixing matrix with full column rank, and t is an index for
time or other relevant variables. In (1-B,C),
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Nk ,,2 ,1 �=  and 2,,2 ,1 Mm �= , are assumed, respectively,

to be N0×N0 and T×T Hermitian constraining matrices, and the
superscript H denotes conjugate transpose.
          To solve (1), we start with deriving its whitened form. Let
the whitened form of (1-A) be [2]
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where
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are the whitened mixed signals, M  is a N×N0 whitening matrix of
full row rank, and

M AU =                                   (4)

V - 3130-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡



is the unitary factor of A. M  can be estimated from y(t) via
eigenvalue decomposition [2] or singular value decomposition
[1]. Let ]      [ 21 NuuuU �= , and it follows from (4)

Nkkk ,,2 ,1   ,#
�=uMa ====           (5)

where the superscript # denotes pseudo inverse. Similarly it
follows from (2)

                    Zus H
kk =                                  (6)

where sk is as defined in (1-C) and Z=[z(1) z(2) … z(T)].
Substituting (5) into (1-B), and (6) into (1-C), we obtain for
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(2) subject to (7) gives the whitened form of (1).
    The solution of (2) subject to (7) is based on constrained

maximization of the JADE criterion, which is defined as [2]
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where Dr, r=1, 2, …, N2, constitute a set of orthonormal bases
for the space of N×N matrices, Qz(Dr) is the cumulant matrix
defined element-wise as
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)  ( ⋅cum denotes the cumulant, * denotes complex conjugate, and
)(r

pqd  is the  (p,q)-th element of Dr.

         Now, with the JADE criterion, solving (2) subject to (7)
becomes a problem of maximizing JADE(U), or equivalently,
minimizing −JADE(U), subject to (7), the solution of which is
developed in section 3.

3. ALGORITHM

In the subsequent sections, we abbreviate Qz(Dr) in (10) as Qr

for notational simplicity and assume that all eigen vectors
discussed have unit L2 norm. Our algorithm solves for each
column of U separately. Each time we find a column, say ku ,

that minimizes �−
2

2||
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r
kr

H
k uQu  under the constraint that ku  has

unit norm and is orthogonal to all columns found previously.
Specifically, we have a constrained optimization problem
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  We use the orthogonal-projection-based idea [4] to
eliminate the constraints in (12-C). Denote the N-by-N identity
matrix as NI . Let ]      [ 1211 −− = kk uuuU � . Then 111 −−− = kk

H
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which is a result of u1, u2, …, uk−1 satisfying (12-B,C). Denote

} ,, ,{ span 1211 −− =Ω kk  uuu � , and ⊥
−Ω 1k  the orthogonal

complement of 1−Ωk . We construct
H
kkN

H
kk

H
kkNk 111

1
111 )(

~
−−−

−
−−− −=−= UUIUUUUIP    (13)

which is the matrix of the orthogonal projection onto ⊥
−Ω 1k . The
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        We now solve (14-B,C,D) using the Lagrangian multiplier
method. We do a partial elimination of the inequality constraints
(14-D) via means of penalty, in accordance to which, the
augmented Lagrangian function for (14-B,D) is [6]
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where c is a positive penalty parameter. With the inequality
constraints (14-D) eliminated, the problem of (14-B,C,D) can be
approximated as
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the Karush-Kuhn-Tucker (KKT) optimality conditions for which
are (17-B) together with
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where we have used the definition in [5] for differentiation with
respect to complex vectors. (18) is evaluated to give
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Equations (17-B) and (19) imply that at the stationary point kw

is an eigenvector of
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with the associated eigenvalue
} ){,( mkcL µλ w=                            (23)

which is equal to the objective function in (17-A). Therefore the
optimal eigenvector kw  for (17) should be associated with the

smallest eigenvalue of )} ,{,(
~

kmk c w
� µ , to minimize the

objective function. We utilize the alternating eigen-search
algorithm [3] to solve the eigenvalue problem of (19) subject to
(17-B).
      It is known from the Lagrangian multiplier theory [6] that
when { µm}  are close to the true Lagrangian multipliers of (14-
B,D), or the penalty parameter c approaches infinity, then
unconstrained minimization of (16) well approximates (14-B,D).
However, a penalty parameter approaching infinity will lead to
severe ill-conditioning for most minimization algorithms.
Fortunately, a whole theory called the augmented Lagrangian
method [6] exists for iteratively adjusting  { µm}  such that { µm}
will converge to the true Lagrangian multipliers of (14-B,D),
with a sufficiently large but not infinite penalty parameter c.
Thus, upon convergence of { µm} , the eigenvector solution of
(17) well approximate the solution of (14-B,C,D).
       Therefore, we have the following overall method to solve
(14-B,C,D). Use the augmented Lagrangian method [6] to
produce a sequence }{ )( i

mµ . For any fixed i, use the alternating

eigen-search algorithm [3] to solve (17). Upon convergence of
}{ )( i

mµ , the solution of (17) approximates the solution of (14-

B,C,D).  The overall algorithm is given as:

  Algorithm 1: Augmented Lagrangian with Alternating
Eigen-search (ALAE)

  Step 1: Define the convergence parameters 0≥λε  and

0≥µε , and a constant α>1.  Choose a moderate initial penalty

parameter c(1)>0. Initialize the multipliers 0)1( >mµ , m=1,2,…,M.
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go back to Step 3.
    Step 5: Update the multipliers. Let
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    Step 6: Update the penalty parameter. Let  )()1( ii cc α=+ .
    Step 7: Check convergence of the multipliers. If
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m µµµµ  for any 1≤m≤M, exit the

algorithm and return “no feasible solution” ; otherwise, if

µεµµ ≤− − || )1()( i
m

i
m  for m=1,2,…,M, exit the algorithm and return
)( i

kw  as the solution; otherwise, let i=i+1 and go back to Step 2.

4. APPLICATION AND EXAM PLE RESULTS

ICA has been used to model narrow-band antenna array signals
[2] and DNA microarray signals [7-8]. The quadratic constraints
(1-B,C), when applied to these two types of signals, have
interesting interpretations from their respective fields. For the
antenna array signals, Fk,m’ s specify the desired range of
direction-of-arrivals (DOA) of the sources and Gk,m’ s specify the
approximate envelopes of the source signals. For DNA
microarray signals, Fk,m’ s and Gk,m’ s are used to encode the
expert knowledge on the constituent genes in each functional
genomic unit (FGU) and the responses of each FGU to the
experimental conditions, respectively. Here a FGU is defined as
a set of genes that operate collectively to effect a biological
function [8]. Because of the space limit, we only present here the
example results on DNA microarray signals.
       We now briefly explain how we construct Fk,m’ s and Gk,m’ s.
Assume y(t) in (1) are the DNA microarray signals, then |ai,k|
defines the membership of the i-th gene belonging to the k-th
FGU and sk(t) is the  response (expression levels) of the k-th
FGU to the t-th experimental condition [8]. From the expert
knowledge (human experts, books, Gene Ontology (GO) [8],
etc.), we can build an approximate and incomplete FGU
subsuming a subset },...,,{ 21 Liii  of its constituent genes. Let the

approximate memberships of these partial genes be |~| ika ,

Liiii ,...,, 21= . Construct a constraining vector kw  to be of the

same dimension as ak and with its i-th element equal to 2|~| ika

for Liiii ,...,, 21=  and zero for others. Let wk to be normalized to

unit L2 norm. The constraint on ak is constructed as
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Comparing (1-B) and (24), we have
                         )(
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        The construction of Gk,m’ s can be implemented in a similar
way. From expert knowledge, we build the approximate
responses )(~ tsk , '21 ,...,, Ltttt = , of a GFU to a subset of

experimental conditions },...,,{ '21 Lttt . Construct  kw  to be a

vector of the same dimension as sk and whose t-th element equal
to )(~ tsk  for '21 ,...,, Ltttt =  and zero for others. Let wk be

normalized to unit L2 norm. The constraint on sk is constructed as
ρ≥== H
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with corr2 the square of normalized correlation between  wk and
sk, and ρ the threshold. Comparing (1-C) and (26), we have

k
H
kTk wwIG −= ρ                     (27)

          We simulate the true responses s(t)=[s1(t) s2(t) s3(t)]
T,

t=1,2,…,300, of three FGUs to 300 experimental conditions and
a 126-by-3 mixing-matrix A. s(t) are then mixed by A to yield
the expression levels y(t) of 126 genes. Various levels of noises
are added to y(t). The expression levels are in logarithm, with
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zero denoting the expression levels under the normal conditions,
and positive and negative values denoting increases and
decreases, respectively, in expression levels, due to the effects of
experiments.
          The ICA and constrained ICA are performed on the noisy
gene expression levels (microarray signals) y(t) to extract the
FGUs’  experimental responses s(t) and the mixing matrix A. The
threshold ρ in the constrained ICA is adaptively chosen to
achieve the best match between |ak|

2 or sk(t) and their respective
constraining vector wk, with the match quantitatively measured
by corr1 or corr2. The errors of the estimates of A and s(t) are
averaged over 200 Monte Carlo runs to yield the mean squared
errors (MSE), which are plotted as a function of signal to noise
ratio (SNR) in Fig.1 and Fig.2, respectively.
          The constraining vectors wk’ s are designed such that they
contain 3 peaks of the true |ak|

2 or sk(t), with the magnitudes
randomly changed by 20% from the corresponding true ones.
There are more than 10 peaks in each simulated |ak|

2 and sk(t), on
average. Therefore the expert knowledge covers less than 30% of
the total information. This amount of expert knowledge, small
though it is, contribute significantly to the improvement in the
estimates of both A and s(t), compared with the ICA results
(which do not use the expert knowledge), as seen from Fig. 1
and Fig. 2. It is also shown in these figures that the ICA with
double constraints simultaneously imposed on |ak|

2 and sk(t)
achieve the top performance. This is natural because the double
constraints provide expert knowledge on both |ak|

2 and sk(t). The
performances of the ICA with a single constraint on |ak|

2 or sk(t)
stand in the middle, as the single constraint provides only half
the expert knowledge that is provided by the double constraints.

5. CONCLUSIONS

We have extended the singly quadratically constrained ICA to
multiply quadratically constrained ICA. Using the JADE
criterion as the measure of statistical independence, we have
derived a new algorithm to perform the multiply quadratically
constrained ICA, based on the augmented Lagrangian method.
As an application example, we implemented the scheme of
learning functional genomic units simultaneously from data and
from experts, via the constrained ICA. Numerical results show
that significant improvements in the estimates of both A and s(t)
can be obtained from the use of expert knowledge and that
double constraints achieve the top performance as a result of
their ability of coding more expert knowledge than the single
constraint.
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Fig. 2 Mean squared errors (MSE) of the estimates of s(t) as a
function of signal to noise ratio (SNR). All values are shown
in decibels. Circle:  ICA; Square:  ICA with simultaneous
constraints on |ak|

2 and sk(t);  Star:  ICA with single constraint
on sk(t);  Triangle: ICA with single constraint on |ak|

2.

Fig. 1 Mean squared errors (MSE) of the estimates of A as a
function of signal to noise ratio (SNR). All values are shown
in decibels. Circle:  ICA; Square:  ICA with simultaneous
constraints on |ak|

2 and sk(t);  Star:  ICA with single constraint
on sk(t);  Triangle: ICA with single constraint on |ak|
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