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ABSTRACT

Quasi-entropy (QE), a class of new independence
measures, is proposed. By optimizing QE, blind separation
of signals with arbitrary continuous distributions is
achieved. Simulations verify these results.

1. INTRODUCTION

Blind signal separation (BSS), or blind separation, is the
task to recover independent source signals from their
mixtures without knowing the mixing coefficients. In
instantaneous BSS, one has samples of d sensor signals
(mixtures)

x(6)=[x, @), () and
described by

x(t)= As(t), t=1-N (1)

where s(t) = [s, (t),- S, (t)]r
independent source signals with at most one being
Gaussian, d 2n, and A is an unknown dxn full-rank
mixing matrix. To recover s(t) from x(t), an nxd de-

collected in

comprises n unknown

mixing matrix B is used to give the output signals

y©) =1 @)y, @ by

y()=Bx(), t=1-N 2)
The components of y(t), if and only if (iff) they are
independent, will become shuffled and scaled versions of
those in s(t).

As we know, n random variables (RVs) r,---,r, are
independent iff their joint probability density function
(PDF) can be factored as the product of their individual
(marginal) PDFs, i.e.,

Py, (ulﬂ.“’un):Hpr, (ui)9 v(ula“'aun) (3)
i=1

In practice however, these PDFs are usually unknown. So
BSS is generally achieved by optimizing a criterion
regarding the independence of the output signals.

Due to its wide applications, BSS was intensively
studied recently. Various criteria and algorithms were
proposed. But many of them have restrictions on source
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Fig. 1. Illustration of quasi-entropy (QE).

distributions. For instance, maximum likelihood
algorithms require a rough fitness to some distribution
model [1]. And the problem with the rather popular
kurtosis-based algorithms is they cannot deal with two or
more zero-kurtosis sources, since the kurtosis of the
mixture of zero-kurtosis sources is still zero. Designing
algorithms that can separate zero-kurtosis sources is
important. Because we may encounter some signals, such
as images, whose kurtoses are exactly or very near zeros.
In this paper, a class of new independence measures
named quasi-entropy (QE) is proposed, algorithms based
on which can separate signals with arbitrary continuous
distributions and favor digital implementation.

2. A CLASS OF NEW INDEPENDENCE MEASURES

Hereafter, we denote the cumulative distribution function
(CDF) of RV r by q, () ,

qr(u)=Pr0b(r Su)=j_:pr (v)dv.
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Fig. 2. A zero-kurtosis PDF.

Consider two continuous RVs 7, r,. Transform them
by their individual CDFs respectively to get two RVs

Z Eqr](r])7 2 Eqrz(rz) 4)
Clearly (zl,z2 )e [O,I]X [0,1]. And from
prr (W’ h)
Pap, ,v) = —s (5)
| P, wp,, (r)
where u =g, (w) and v=gq, (h) , we know that
Lemma 1I: r, and 7, are independent iff

D.., (u,v)z 1, V(u,v)e [O,I]X [0,1].
Let / be an integer greater than 1. Define an /-level
uniform quantization operator D, () on [0,1] as

<
D, (u ) _ { [ull 1 0u<=u0_ 1
where fﬂ denotes the least integer not less than v.
Clearly D,(u)e {1, 2,1} for ue[0,1].
Now let us define discrete RVs

ky EDz(Zl)a k, EDz(Zz) (7
Let p,, (i,j)=Prob (k1 =i and k, =j) be the joint
probability of k, and k, where (i,j)e {1,---,]})({1,---,]}.
Then the new independence measure, which is called

quasi-entropy (QE) due to its some similarity to the
entropy in information theory [4],

BGir)=3 3 £(pes (1) ®)

i=1 j=I

(6)

where f () is a strictly convex function on [0,1].

Due to the Jensen’s inequality, we have

ﬂ(r],rz)ZPf(l/lz) )

with equality iff (k,,k, ) is uniform in {I---/}x{l,---,/}.

On the other hand, if # and r, are independent, then
(Zl,zz) is uniform in [O,I]X[O,l] (Lemma 1) and thus
(kI .k, ) is uniform in {1,- . -,l}x {1,- N l}. Therefore we have
If » and r, are independent, then
B(r,,r,) reaches its minimum [R.H.S. of (9)].

Indeed, we may also prove [2]
Lemma 3: If r, and r, are not independent, then

Lemma 2:

there exists [/, such that B(r,,r,) cannot reach its

minimum for any / >/, .
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Fig. 3. QE of rotational mixtures of two equal-variance sources versus
the rotation angle.

Fig. 1 illustrates QE. Fig. 1 (a) and (b) are observed
points of two independent RVs, s, and s,, and two

dependent RVs, x, and x,, respectively. Fig. 1 (c) and (d)
plot observations of (z,,z,) and (z1 ,zz), respectively,
Z; =4, (sz ) >
z, =q, (xz). The points in Fig. 1 (c) are uniformly

where  z, =g, (sl), z =q, (xl)’ and

distributed while those in Fig. 1 (d) are not, manifesting
Lemma 1. According to Fig. 1 (c, e) and (d, 1),
ki EDS(ZI ), ky = Ds(zz)’ ky EDS(ZI*)7 k; = DS(Z;)‘
The uniform p,, and the nonuniform p,. . are shown by

grayscales in Fig. 1 (e) and (f) respectively. (The darker
the color, the greater the probability.) Therefore,
Bls..s2) =1 1(/17 )=257(/25)< (.., ).

Since there are infinitely many strictly convex
functions on [0,1], QE is actually a class of infinitely many
independence measures. Some of the common convex
functions were listed in [4].

In practice, analytical forms of CDFs are usually
unknown. But this does not matter. Using the definition of
CDF, we may directly map samples of (r1 , rz) to estimates

of samples of (kl,kz) and no floating-point operation is
involved. For details, see [3]. Then p,, , and thus QE, are

easily estimated. Note the input range of the convex
function f () is limited to [0,1], so it is easily
implemented by a look-up table. All these facilitate digital
realization.
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Fig.4. Histograms and kurtoses of the source images.
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Fig. 5. Blind separation of image signals.
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Tab. 1 SNRs and PSNRs of the recovered images by QE-based algorithms (/=100), fastICA, and extended infomax (dB)

f(u) Lena Tiffany couple cla0 Average
SNR PSNR SNR PSNR SNR PSNR SNR PSNR SNR PSNR

_ \/; 24.9 36.7 19.9 31.0 15.0 28.8 30.7 41.7 22.6 34.6
explu) 26.7 38.2 20.8 322 143 28.0 52.6 60.8 28.6 39.8
~In(l+u) 27.0 38.1 20.7 31.9 13.9 2738 45.6 53.9 26.8 37.9
_% 26.4 37.7 19.1 30.4 16.0 29.7 28.4 39.3 22.5 343
fastICA 14.1 26.2 15.6 26.6 3.5 18.6 1.9 16.4 8.8 21.9
extended infomax 21.8 30.7 2.0 14.5 6.0 20.5 3.0 16.4 8.2 20.5

3. SIMULATIONS AND CONCLUSION

First we verify our results with some standard distributions.

We mix two equal-variance independent sources s,, s, by
a 2X2 rotation matrix with rotation angle 6 to get 1, r,
[3]. Thus we can plot QE of 7, r, as a function of 0, i.e.
B©)=pB(r,,r,). Uniform, Laplacian, sinusoid, and
Rayleigh sources are used. Besides, we generate a zero-
kurtosis source like this: Suppose two independent sources
s* and s~ with positive and negative kurtoses k¥ and k-
respectively, then the source s =as” +bs~ will have zero
kurtosis ~ when  the two  coefficients  satisfy
a*[b* =k [k
sources as s and s~ respectively, the generated zero-
kurtosis distribution is as the solid curve in Fig. 2, which is
apparently different from the Gaussian distribution with

same variance plotted with dashed curve. Fig. 3 shows
B (9) using different combinations of the above sources

. If we choose Laplacian and Uniform

and several different convex functions. All the curves
reach minima at 8 =0, where the signals are separated
and independent. If calculating the minima according to
(9), we get —10, 82.0062, —0.9950, and —27 for Fig. 3 (a)
through (d) respectively, which are just the minima in the
plots.

The pairwise iterative structure of the BSS algorithms
based on QE is the same as that based on the grid
occupancy (GO) [4], which was described in [3], only that
we optimize QE instead of GO. We do not list it here due
to lack of space. We show the efficacy of the QE-based
algorithms by an image separation example. Fig. 4 shows
the histograms and kurtoses of the four 256256 images
with negative, positive, and two near-zero kurtoses,
respectively. Fig. 5 shows the results. Fig. 5 (a) are the
source images, (b) the mixtures obtained using a 4x4
mixing matrix, and (c) the separated images by our

algorithm with f (u)=—\/; and /=100. Comparisons

are made with two widely used algorithms, fastiICA [5]
and extended infomax [6], output signals by which are
shown in Fig. 5 (d) and (e) respectively. The kurtosis-
based fastiICA cannot separate the last two near-zero
kurtosis images and the effect of extended infomax is not
good for the last three images. Tab. 1 summarizes the

SNRs and peak SNRs (PSNRs) of our algorithms with
several convex functions and those of the two other
algorithms.

Moreover, the robustness of QE-based algorithms has
been fully tested with mixtures of 20 sources as those in
[6].

Finally we mention some related works. In [4], the
new independence measures GO, QE, and generalized
mutual information (GMI) were briefly summarized. The
novel BSS algorithm based on GO was proposed in [3].
Interestingly, the expectation of GO is also a kind of QE
[4]. A recursive algorithm for computing GMI, which
includes the famous one for computing mutual information
(MI) [7] as a special case, was developed in [4]. All these
new measures are good criteria beyond the classical MI for
choosing delay in strange attractor reconstruction [4].
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