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ABSTRACT

A normalised natural gradient algorithm (NGA) for the sep-

aration of cyclostationary source signals is proposed in this

paper. It improves the convergence properties of the cyclo-

stationary natural gradient algorithm (CSNGA) by employ-

ing a gradient adaptive learning rate whose value changes

in response to some change in the filter parameters. Exper-

imental results demonstrate the improved behaviour of the

approach.

1. INTRODUCTION

The objective of blind source separation (BSS) is to recover

the original independent source signals given only a set of

observations which arise when the sources are mixed by

passage through some unknownmedium. Although the term

blind indicates that no knowledge is available about either

the sources or the mixing channel, to make the problem

more tractable, several assumptions are typically made re-

garding both. In this paper, we assume that the source sig-

nals are wide sense cyclostationary, which implies that the

mean and autocorrelation function of the data vary periodi-

cally with time, and arise when the underlying process gen-

erating the signal has oscillatory behaviour, as does biomed-

ical data, which frequently originate from breathing or con-

traction of the cardiac muscle, or due to modulation in man-

made signals. In particular, we propose a normalised ver-

sion of the CSNGA approach [1], a sequential algorithm for

the separation of cyclostationary sources, based on NGA

[2].

Thus, we begin with stating the BSS problem in Section 2,

followed by a brief description of the CSNGA algorithm in

Section 3. The normalised cyclostationary NGA algorithm

is presented in Section 4, where it is also generalised to the

case of complex valued sources. The performance of the

proposed approach for real and complex data is shown by

simulation in section 5, while conclusions are drawn in sec-

tion 6.
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2. PROBLEM STATEMENT

Them observed signals generated when n sources are mixed

by a time-invariant instantaneous channel, and no noise is

present, are given by [2]

x(k) = As(k) (1)

where x(k) ∈ Cm is the vector of observed signals, and

s(k) ∈ Cn is the vector of source signals, assumed to be

zero-mean and mutually independent. A ∈ C
m×n

is an un-

known, full column rank mixing matrix, and typically it is

assumed that there are at least as many sensors as sources,

that ism ≥ n. The sources are recovered using the follow-

ing linear separating system

y(k) =W(k)x(k) (2)

where y(k) ∈ Cn is an estimate of s(k), and W(k) ∈

C
n×m

is the separating matrix. The sources can only be re-

covered up to a multiplicative constant, and their order can-

not be pre-determined, so that perfect separation is achieved

when the global mixing-separating matrix, defined as

P(k) =W(k)A (3)

tends toward a matrix with only one non-zero term in each

row and column [2], and is given by

P(k) = JD (4)

where J ∈ C
n×n

is a permutation matrix modeling the or-

dering ambiguity, and D ∈ C
n×n

is a diagonal matrix ac-

counting for the scaling indeterminacy. The performance

of a BSS method can be assessed by plotting the following

performance index (PI)

PI(k) =
1

m

m∑

i=1






m∑

j=1

|pij |
2

maxq|piq|
2 − 1






+
1

m

m∑

j=1

{
m∑

i=1

|pij |
2

maxq|pqj |
2 − 1

}
(5)
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whereP(k) = [pij ], andm is the number of source signals.

Thus, the performance index is a measure of the closeness

between W(k) and the pseudo-inverse of the mixing ma-

trix, taking into account the scaling and ordering ambigui-

ties. Generally, a low PI indicates better performance. Con-

ventional BSS assumes that at most one source has Gaussian

distribution because, for Gaussian random variables, uncor-

relatedness corresponds to independence. In this paper we

further assume that the sources are cyclostationary.

3. CYCLOSTATIONARY NATURAL GRADIENT

ALGORITHM

The cyclostationary natural gradient algorithm attempts to

minimise the following cost function [1]

KL (W (k)) = − log det (W (k))−
m∑

i=1

log qi (yi (k))

+
1

2
Tr

(
R̃
α

y
(k)
)
−

1

2
log det

(
R̃
α

y
(k)
)
−
m

2
(6)

where Tr (·) and det (·) are respectively the trace and deter-
minant operators, and qi (yi (k)) is an appropriately chosen
independent pdf. The term R̃

α
y (k) is defined as R̃α

y (k) =∑
m

p=1
R
αp

y (k), where R
αp

y (k) = E
{
e
jαpky (k)yT (k)

}

represents the output cyclic correlation matrix for the p-th

cycle frequency which is required to satisfy

lim
k→∞

E
{
R
αp

y (k)
}
= I

′ (7)

where the elements of I′, [I′]l,g are defined by

[I′]l,g =

{
1, if l ∈ {1, 2, . . . ,m}, g = l = p

0, otherwise
(8)

Then, in the limit as k→∞, each of the output cyclic corre-

lationmatrices converges to a matrix with only one non-zero

entry, situated at the p-th position along the main diagonal,

giving limk→∞ R̃
α
y (k) = I. When the source signals and

the mixing matrix are real valued, the update equation for

the cyclostationary natural gradient algorithm is given by

W (k + 1) =W (k) + µ (k)
[
I− f(y(k))yT (k)

+I− R̃α
y (k)

]
W (k) (9)

where µ (k) is the learning rate. Reasoning along the lines
of [3], the learning rule (9) effectively represents a single

stage sequential algorithm performing second- and higher-

order conventional decorrelation simultaneously, as well as

second-order cyclic decorrelation.

4. ADAPTIVE STEP-SIZE PARAMETER

The use of a fixed step-size parameter generally leads to

slow convergence speed and poor tracking performance. Al-

ternatively, a time-varying step-size parameter can be em-

ployed, which changes in response to some change in the

filter parameters. Hence, based on the method outlined in

[4], a gradient adaptive step-size algorithm is derived, which

updates the learning rate so that at every iteration it attempts

to minimise the CSNGA cost function (6). Thus, the learn-

ing rate at time k is evaluated recursively according to [4]

µ (k) = µ (k − 1)− ρ
∂KL (W (k))

∂µ (k − 1)
(10)

where ρ is a step-size parameter. As in [4], we assume for

the sake of clarity that there are as many source as there are

mixturesm = n, and that, for small learning rates

W (k)x (k + 1) ≈ y (k + 1) (11)

Differentiating (6) with respect to µ (k) gives

∂KL (W (k + 1))

∂µ (k)
= −

∂ log det (W (k + 1))

∂µ (k)

−

m∑

i=1

∂ log qi (yi (k + 1))

∂yi (k + 1)

∂yi (k + 1)

∂µ (k)

+
1

2

∂Tr

(
R̃
α
y (k + 1)

)

∂µ (k)
−

1

2

∂ log det
(
R̃
α
y (k + 1)

)

∂µ (k)
(12)

Substituting (9) into the first term on the right-hand side of

(12) we have

∂ log detW (k + 1)

∂µ (k)
=

∂ log det

∂µ (k)
{I+ µ (k) [I

−f(y(k))yT (k) + I− R̃
α
y (k)

]}
+

∂ log detW (k)

∂µ (k)
(13)

To compute the differential in (13), the determinant of the

matrix must be evaluated {I + µ (k) [I −f(y(k))yT (k) +

I− R̃
α
y (k)

]}
. This can be achieved using the result that the

determinant of anm×mmatrix equals the product of itsm

eigenvalues [5]. Then {I + µ (k) [I −f (y(k))yT (k) + I−

R̃
α
y (k)

]}
hasm− 1 eigenvalues equal to 1 + 2µ (k), and

one equal to 1+µ (k)
[
2− yT (k) f (y (k))−

∑m

p=1 e
jαpk×

y
T (k) y (k)] [4], because the matrices f (y(k))yT (k) and
R̃
α
y (k) are rank deficient, both of rank 1. Thus, letting

e
jαk =

∑m

p=1 e
jαpk, (13) becomes

∂ log detW (k + 1)

∂µ (k)
=

2 (m− 1)

(1 + 2µ (k))

+

(
2− yT (k) f (y (k))− e

jαk
y
T (k)y (k)

)

1 + µ (k) (2− yT (k) f (y (k))− ejαkyT (k)y (k))
(14)
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which holds for 0 < µ (k)� |2− y
T (k) f (y (k))

−ejαkyT (k) y (k)| [4].

A similar approach is followed to evaluate the fourth term of

(12), in which, from (2), R̃α
y (k + 1) can be replaced with

W (k + 1) R̃α
x (k + 1)WT (k + 1). Also, assuming that,

for small learning rates

W (k) R̃α
x (k + 1)WT (k + 1) ≈ R̃

α
y (k + 1) (15)

the derivative of log det
(
R̃
α
y (k + 1)

)
is given by

∂ log det
(
R̃
α
y (k + 1)

)

∂µ (k)
=

2 (m− 1)

(1 + 2µ (k))

+

(
2− yT (k) f (y (k))− e

jαk
y
T (k)y (k)

)

1 + µ (k) (2− yT (k) f (y (k))− ejαkyT (k)y (k))
(16)

To evaluate the second term on the right-hand side of (12),

we use fi (yi) = −
∂ log qi(yi)

∂yi
[2] giving

−

m∑

i=1

∂ log qi (yi (k + 1))

∂yi (k + 1)

∂yi (k + 1)

∂µ (k)
=

m∑

i=1

fi (yi (k + 1))

×
∂yi (k + 1)

∂µ (k)
(17)

From (2) and (9), and using the approximation (11) we have

y (k + 1) ≈W (k)x (k + 1) + µ [I −f(y(k))yT (k)

+ I− R̃
α
y (k)

]
y (k + 1) (18)

Differentiating and pre-multiplying by fT (y (k + 1)), gives

f
T (y (k + 1))

∂y (k + 1)

∂µ (k)
≈ f

T (y (k + 1)) [I

−f(y(k))yT (k) + I− R̃
α
y (k)

]
y (k + 1) (19)

Finally, differentiating Tr

(
R̃
α
y (k + 1)

)
with respect toµ (k)

yields

∂Tr

(
R̃
α
y (k + 1)

)

∂µ (k)
≈ Tr ([I −f(y(k))yT (k)

+ I− R̃
α
y (k)

]
R̃
α
y (k + 1)

)
(20)

where (9) and (15) have been used. Substituting back into

(10), and letting b (k − 1) = (2− yT (k − 1) f (y (k − 1))

−ejαkyT (k − 1)y (k − 1)), the new gradient adaptive step-

size algorithm is given by

µ (k) = µ (k − 1) + ρ

{
f
T (y (k)) R̃α

y (k − 1)y (k)

−2yT (k) f (y (k)) + f
T (y (k)) f(y(k − 1))

×y
T (k − 1)y (k) +

3 (m− 1)

(1 + 2µ (k − 1))

+
3b (k − 1)

2 [1 + µ (k) b (k − 1)]
−

1

2
Tr ([I −f(y(k − 1))

×y
T (k − 1) + I− R̃

α
y (k − 1)

]
R̃
α
y (k)

)}
(21)

As in [4], µ (k) ∈ [δ, µ
max

] , where δ is a small positive

constant preventing the adaptation of the learning rate from

terminating entirely, and µ
max

represents an upper bound,

controlling the size of µ (k), thus ensuring stability of (21).
Moreover, it is reported in [4] that, as with all gradient step-

size methods, the greatest disadvantage of the above algo-

rithm is the need to select an appropriate step-size parameter

ρ, although simulations have shown in general that gradient

step-size algorithms are relatively insensitive to its value.

This applies also to (21).

4.1. Complex CSNGA (CCSNGA)

Extension of the cyclostationary NGA algorithm to the com-

plex case is readily achieved by modifying (9), such that

the transpose operator is replaced by the Hermitian trans-

pose operator, and an appropriate phase preserving com-

plex activation function g (y (k)) is selected [6]. A common

strategy is to employ so called split-complex non-linearities,

such as gi (yi (k)) = tanh (yiR (k))+j tanh (yiI (k))where
yiR (k) and yiI (k) denote respectively the real and imagi-
nary parts of yi (k), when the sources are super-Gaussian,

or as [3] gi (yi (k)) = yi (k) |yi|
2
for the sub-Gaussian case.

Thus, the learning rule (9) becomes

W (k + 1) =W (k) + µ (k)
[
I− g(y(k))yH(k)

+ I− R̃
α
y (k)

]
W (k) (22)

Extension of the adaptive step-size algorithm to the complex

case follows from the same rules as above

µ (k) = µ (k − 1) + ρRe

{
g
H (y (k)) R̃α

y (k − 1)y (k)

−2yH (k)g (y (k)) + g
H (y (k))g(y(k − 1))

×y
H(k − 1)y (k) +

3 (m− 1)

(1 + 2µ (k − 1))

+
3b (k − 1)

2 [1 + µ (k) b (k − 1)]
−

1

2
Tr ([I− g(y(k − 1))

×y
H(k − 1) + I− R̃

α
y (k − 1)

]
R̃
α
y (k)

)}
(23)

where Re {u} represents the real part of u. The learning

rate must remain real valued to ensure the descent direction

is not modified.
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Fig. 1. Average PIs obtained with CSNGA, for real sources

and mixing matrix, and with fixed and adaptive learning

rate.

5. SIMULATIONS

The behaviour of the CSNGA algorithm with gradient adap-

tive step-size is illustrated by computer simulation. The

sources are a sinusoidal noise signal of normalised frequency

(40π)−1, and two BPSK signals carrying independent bi-

nary data, and using sinusoidal carriers of frequencies 2(5π)−1

and (4π)
−1
. The sources are mixed by a real matrix A for

0 ≤ k < 2500, and by its transpose A
T
for k ≥ 2500,

and zero mean white Gaussian noise is added, so that the

SNR is 10 dB. Since the source signals and mixing matrix

are real, the exponential function in equation (9) simplifies

to a cosine function. The resulting mixtures are separated

using CSNGA with fixed step-size parameter µ̂ equal to

0.001, and with the adaptive learning rate in (21), where

µ (0) = 0.001, ρ = 10−7, δ = 10−4 and µmax = 0.005.
Figure 1 shows that the average performance of the CSNGA

algorithm improves considerably when the adaptive step-

size method is employed, since the algorithm reacts quickly

to the changes in the mixing channel.

Next, two QPSK signals modulated by sinusoids of carrier

frequencies 2(5π)−1 and (4π)
−1
, and one complex sinu-

soid of frequency (40π)−1 are mixed by a real instantaneous
mixing channel which changes abruptly after 2500 samples.

Complex valued circular zero mean white Gaussian noise

is added such that the SNR is 10 dB. Separation is carried

out using the complex CSNGA method, when the learning

rate is fixed µ̂ = 0.002, and when the adaptive step-size

(23) is used, with µ (0) = 0.002, ρ = 10−7, δ = 10−4

and µmax = 0.005. Figure 2 shows that the adaptive step-
size method tracks the changes in the mixing channel more

quickly than the fixed step-size approach. In particular, the

initial convergence speed, as well as the speed of conver-

gence following the abrupt change, is found to increase.
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Fig. 2. Average PIs obtained with CSNGA, for complex

sources and a real mixing matrix, together with fixed and

adaptive learning rate.

6. CONCLUSIONS

A normalised natural gradient algorithm for the separation

of real and complex valued cyclostationary sources has been

presented. Simulation results have shown that the algorithm

leads to fast speed of convergence for both real and com-

plex valued sources, and when the mixing matrix changes

abruptly, and in general it improves the convergence prop-

erties of the CSNGA approach.
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