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ABSTRACT

A normalised natural gradient algorithm (NGA) for the sep-
aration of cyclostationary source signals is proposed in this
paper. It improves the convergence properties of the cyclo-
stationary natural gradient algorithm (CSNGA) by employ-
ing a gradient adaptive learning rate whose value changes
in response to some change in the filter parameters. Exper-
imental results demonstrate the improved behaviour of the
approach.

1. INTRODUCTION

The objective of blind source separation (BSS) is to recover
the original independent source signals given only a set of
observations which arise when the sources are mixed by
passage through some unknown medium. Although the term
blind indicates that no knowledge is available about either
the sources or the mixing channel, to make the problem
more tractable, several assumptions are typically made re-
garding both. In this paper, we assume that the source sig-
nals are wide sense cyclostationary, which implies that the
mean and autocorrelation function of the data vary periodi-
cally with time, and arise when the underlying process gen-
erating the signal has oscillatory behaviour, as does biomed-
ical data, which frequently originate from breathing or con-
traction of the cardiac muscle, or due to modulation in man-
made signals. In particular, we propose a normalised ver-
sion of the CSNGA approach [1], a sequential algorithm for
the separation of cyclostationary sources, based on NGA
[2].

Thus, we begin with stating the BSS problem in Section 2,
followed by a brief description of the CSNGA algorithm in
Section 3. The normalised cyclostationary NGA algorithm
is presented in Section 4, where it is also generalised to the
case of complex valued sources. The performance of the
proposed approach for real and complex data is shown by
simulation in section 5, while conclusions are drawn in sec-
tion 6.
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2. PROBLEM STATEMENT

The m observed signals generated when n sources are mixed
by a time-invariant instantaneous channel, and no noise is
present, are given by [2]

x(k) = As(k) (1)

where x(k) € C™ is the vector of observed signals, and
s(k) € C" is the vector of source signals, assumed to be
zero-mean and mutually independent. A € C™*™ is an un-
known, full column rank mixing matrix, and typically it is
assumed that there are at least as many sensors as sources,
that is . > n. The sources are recovered using the follow-

ing linear separating system
y(k) = W(k)x(k) )

where y(k) € C" is an estimate of s(k), and W (k) €
C™*"™ is the separating matrix. The sources can only be re-
covered up to a multiplicative constant, and their order can-
not be pre-determined, so that perfect separation is achieved
when the global mixing-separating matrix, defined as

P(k) = W(k)A 3)

tends toward a matrix with only one non-zero term in each
row and column [2], and is given by

P(k) = JD (4)

where J € C™*™ is a permutation matrix modeling the or-
dering ambiguity, and D € C™*" is a diagonal matrix ac-
counting for the scaling indeterminacy. The performance
of a BSS method can be assessed by plotting the following
performance index (PI)

_1sy pij|?

S m — Zmaxq\piqP—l
I~ i |?

+—= — Q)
m ; {Z maxy|pg;|? — 1

ICASSP 2003




where P (k) = [p;;], and m is the number of source signals.
Thus, the performance index is a measure of the closeness
between W (k) and the pseudo-inverse of the mixing ma-
trix, taking into account the scaling and ordering ambigui-
ties. Generally, a low PI indicates better performance. Con-
ventional BSS assumes that at most one source has Gaussian
distribution because, for Gaussian random variables, uncor-
relatedness corresponds to independence. In this paper we
further assume that the sources are cyclostationary.

3. CYCLOSTATIONARY NATURAL GRADIENT
ALGORITHM

The cyclostationary natural gradient algorithm attempts to
minimise the following cost function [1]

KL(W (k) = ~logdet (W (k)) = > logq; (yi ()

+%T7‘ (R;; (k)) - %log det (R;; (k)) - % 6)
where T'r (-) and det (-) are respectively the trace and deter-
minant operators, and ¢; (y; (k)) is an appropriately chosen
independent pdf. The term f{;‘ (k) is defined as R;‘ (k) =
SR (k). where RS () = B {eorky (k) y7 (k)
represents the output cyclic correlation matrix for the p-th
cycle frequency which is required to satisfy

lim B {Rg (k)} =1 ()
where the elements of I', [I']; , are defined by

v _{ 1, ifle{1,2,..
I

Lmb,g=1l=p
0, otherwise ®)

Then, in the limit as k — oo, each of the output cyclic corre-
lation matrices converges to a matrix with only one non-zero
entry, situated at the p-th position along the main diagonal,
giving limy,_., Ry (k) = L. When the source signals and
the mixing matrix are real valued, the update equation for
the cyclostationary natural gradient algorithm is given by

W (k+1) =W (k) + (k) [L-£(y(k))y" (k)
+HI-RY (k)} W (k) ©)
where p (k) is the learning rate. Reasoning along the lines
of [3], the learning rule (9) effectively represents a single
stage sequential algorithm performing second- and higher-

order conventional decorrelation simultaneously, as well as
second-order cyclic decorrelation.

4. ADAPTIVE STEP-SIZE PARAMETER

The use of a fixed step-size parameter generally leads to
slow convergence speed and poor tracking performance. Al-

ternatively, a time-varying step-size parameter can be em-
ployed, which changes in response to some change in the
filter parameters. Hence, based on the method outlined in
[4], a gradient adaptive step-size algorithm is derived, which
updates the learning rate so that at every iteration it attempts
to minimise the CSNGA cost function (6). Thus, the learn-
ing rate at time k is evaluated recursively according to [4]

OKL(W (k)

pk)=pk—1)—p )

(10)

where p is a step-size parameter. As in [4], we assume for
the sake of clarity that there are as many source as there are
mixtures m = n, and that, for small learning rates

W (k)x(k+1)~y (k+1) (11)
Differentiating (6) with respect to x (k) gives
OKL(W (k+1))  Ologdet (W (k+1))

311 ) B1a ()
B i 9loggi (yi (k +1)) dyi (k +1)
— dy; (k+1) o (k)
L OTr (R;; (k + 1)) | Olog det (Rg (k + 1))
+_ -
2 op (k) 2 op (k)

(12)

Substituting (9) into the first term on the right-hand side of
(12) we have

Ologdet W (k+1)  Ologdet

5r ) ouir) LTI
)y (1) + 1 R ()]} + A )

(13)
To compute the differential in (13), the determinant of the
matrix must be evaluated {I + (k) [I —f(y(k))y? (k) +
I- Rg (k)} } This can be achieved using the result that the
determinant of an m x m matrix equals the product of its m
eigenvalues [5]. Then {I + p (k) [I —f(y(k))yT (k) + I —
R (k)] } |
one equal to 1+ (k) [2 — y™ (k) f (y (k) =2, €77k x
y* (k) y (k)] [4], because the matrices f(y(k))y” (k) and
R (k) are rank deficient, both of rank 1. Thus, letting

elok =370 | elrk, (13) becomes

has m — 1 eigenvalues equal to 1 + 24 (k), and

Ologdet W (k+1)  2(m—1)
G e TIC)
2-y" (&) f (v (k) — "y (k) y (k)
L4 p (k) 2—y" (k) (y (k) —eo*yT (k) y (k)()14)
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which holds for 0 < u (k) < |2— yT (k) f (y (k))
—eloty T (k) y (k)| [4].

A similar approach is followed to evaluate the fourth term of
(12), in which, from (2), R (k + 1) can be replaced with
W (E+1)R2 (k+ 1) WT (k4 1). Also, assuming that,
for small learning rates

W (k)RS (k+1)WT (k+1)~ RS (k+1) (15)

the derivative of log det (f{j (k+ 1)) is given by

0log det (R;j‘ (k+ 1)) C2(m—1)
op (k) (T4 2p(k)
(2—y" (k) f(y (k) — e/*FyT (k) y (k)
L+ p(k)(2—yT (k) f(y (k) —elokyT (k) y (k)()16)

To evaluate the second term on the right-hand side of (12),
we use f; (y;) = Mﬂ [2] giving

"~ dlogq; (y; (k+1)) Oy; (k+1
> dy; (k +1) op (k)

« Jyi (k+1)
op (k)

From (2) and (9), and using the approximation (11) we have

Zfz Yi k+1)>

i=1

(17

yk+1) = W(k)x(k+1)+

+1— R (k)

wI—£(y(k))y" (k)
y (k+1) (18)

Differentiating and pre-multiplying by 7 (y (k + 1)), gives

dy (k+1)
o (k)
—E(y ()Y (k) + 1= R (k)] y (b + 1)

7 (y (k+1)) ~f(y(k+1) [T

(19)

Finally, differentiating T'r (f{j (k+ 1)) with respect to 1 (k)
yields
aTr (R; (k + 1))

D1 (F) ~Tr (L ~£(y(k)y" (k)

+1- RS (k)] RY (k+1)) (20)

where (9) and (15) have been used. Substituting back into
(10), and letting b (k — 1) = (2 —yT (k — 1) f(y (k — 1))
—elokyT (K — 1)y (k — 1)), the new gradient adaptive step-

size algorithm is given by
w(k) = p k= 1) +p {7 (v (k) RS (k= 1)y (k)
2y ()£ (y (k) + £7 (v (k) £y (k — 1)

) 3(m—1)
Xy (k—l)y(k)+m
3b(k—1)

1
2 pmete ] 2 L)

xyT(k—1) +1— RZ (k- 1)] Ry (k))} @1)

As in [4], p(k) € [0, tyax) » Where § is a small positive
constant preventing the adaptation of the learning rate from
terminating entirely, and ., represents an upper bound,
controlling the size of  (k), thus ensuring stability of (21).
Moreover, it is reported in [4] that, as with all gradient step-
size methods, the greatest disadvantage of the above algo-
rithm is the need to select an appropriate step-size parameter
p, although simulations have shown in general that gradient
step-size algorithms are relatively insensitive to its value.
This applies also to (21).

4.1. Complex CSNGA (CCSNGA)

Extension of the cyclostationary NGA algorithm to the com-
plex case is readily achieved by modifying (9), such that
the transpose operator is replaced by the Hermitian trans-
pose operator, and an appropriate phase preserving com-
plex activation function g (y (k)) is selected [6]. A common
strategy is to employ so called split-complex non-linearities,
suchas g; (y; (k)) = tanh (y;r (k))+J tanh (y; (k)) where
yir (k) and y;; (k) denote respectively the real and imagi-
nary parts of y; (k), when the sources are super-Gaussian,
oras[3] g (yi (k) = yi (k) Jys|* for the sub-Gaussian case.
Thus, the learning rule (9) becomes
W (k+1) =W (k) + p (k) [L-g(y(k))y" (k)
+I-R (k)] W (k) 22)

Extension of the adaptive step-size algorithm to the complex
case follows from the same rules as above

(k) = pu(k = 1) + pRe {&"" (3 (k) R§ (k = 1)y (k)
2y () g (y (k) +&" (v (k) B(y(k — 1))
(k

H 3(m—1)
xy? (k—=1)y (k) + m
DD L (1 glyh - 1))

2[1+p(k)b(k—1)] 2
xy(k—1)+1- Ry (k—l)] RY (k))}

where Re {u} represents the real part of u. The learning
rate must remain real valued to ensure the descent direction
is not modified.

(23)
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Fig. 1. Average Pls obtained with CSNGA, for real sources
and mixing matrix, and with fixed and adaptive learning
rate.

5. SIMULATIONS

The behaviour of the CSNGA algorithm with gradient adap-
tive step-size is illustrated by computer simulation. The
sources are a sinusoidal noise signal of normalised frequency
(40m)~1, and two BPSK signals carrying independent bi-

nary data, and using sinusoidal carriers of frequencies 2(57) !

and (47) ', The sources are mixed by a real matrix A for
0 < k < 2500, and by its transpose A’ for k& > 2500,
and zero mean white Gaussian noise is added, so that the
SNR is 10 dB. Since the source signals and mixing matrix
are real, the exponential function in equation (9) simplifies
to a cosine function. The resulting mixtures are separated
using CSNGA with fixed step-size parameter ji equal to
0.001, and with the adaptive learning rate in (21), where
p(0) = 0.001, p = 1077, § = 10~* and p,,,, = 0.005.
Figure 1 shows that the average performance of the CSNGA
algorithm improves considerably when the adaptive step-
size method is employed, since the algorithm reacts quickly
to the changes in the mixing channel.

Next, two QPSK signals modulated by sinusoids of carrier
frequencies 2(57)~! and (47)~", and one complex sinu-
soid of frequency (407)~! are mixed by a real instantaneous
mixing channel which changes abruptly after 2500 samples.
Complex valued circular zero mean white Gaussian noise
is added such that the SNR is 10 dB. Separation is carried
out using the complex CSNGA method, when the learning
rate is fixed 1 = 0.002, and when the adaptive step-size
(23) is used, with 1 (0) = 0.002, p = 1077, § = 10~*
and .. = 0.005. Figure 2 shows that the adaptive step-
size method tracks the changes in the mixing channel more
quickly than the fixed step-size approach. In particular, the
initial convergence speed, as well as the speed of conver-
gence following the abrupt change, is found to increase.

—— Fixed p
16 Adaptive p(k)

o 1000 2000 3000 4000 5000
Sample number

Fig. 2. Average Pls obtained with CSNGA, for complex
sources and a real mixing matrix, together with fixed and
adaptive learning rate.

6. CONCLUSIONS

A normalised natural gradient algorithm for the separation
ofreal and complex valued cyclostationary sources has been
presented. Simulation results have shown that the algorithm
leads to fast speed of convergence for both real and com-
plex valued sources, and when the mixing matrix changes
abruptly, and in general it improves the convergence prop-
erties of the CSNGA approach.
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