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ABSTRACT

Few source separation and independent component analysis
approaches attempt to deal with noisy data. We consider an addi-
tive noise mixing model with an arbitrary number of sensors and
possibly more sources than sensors (the “degenerate separation
problem”) when sources are disjointly orthogonal. We show how
disjoint orthogonality can be viewed as a limit of a stochastic voice
modeling assumption. This is the basis for our approach to noisy
model estimation by maximum likelihood, under the direct-path
far-field assumptions. The implementation of the derived criterion
involves iterating two steps: a partitioning of the time-frequency
plane for separation followed by an optimization of the mixing pa-
rameter estimates. The solution is applicable to an arbitrary num-
ber of microphones and sources. Experimentally, we show the ca-
pability of the technique to separate four voices from two, four, six
and eight channel recordings in the presence of strong noise.

1. INTRODUCTION

Source separation promises to further a variety of applications of
speech enhancement and separation beyond what is possible to-
day with classical microphone array techniques [1]. In particular
for audio signals (the domain of interest in this work), a variety of
BSS techniques have been introduced in recent years. Few work
on real audio data (e.g. [2, 3, 4]), even fewer with noisy data [5],
and most deal with the “square” case of source separation (equal
number of sources and sensors). Claims of generalization to the
non-square case exist, however most often it is not clear how tech-
niques would scale, neither from an algorithmic perspective nor in
terms of computational properties.

[6] introduced a BSS technique for the separation of an arbi-
trary number of sources from justtwo mixtures provided the time-
frequency representations of sources do not overlap. The key ob-
servation in the technique is that each time-frequency (TF) point
depends on at most one source and its associated mixing parame-
ters. This deterministic hypothesis was calledW-disjoint orthogo-
nality and is reviewed in section 2.2. In anechoic non-noisy envi-
ronments, it is possible to extract the mixing parameters from the
ratio of the TF representations of the mixtures. Using the mixing
parameters, one can partition the TF representation of the mixtures
to produce the original sources.

The deterministic signal model was extended to a stochastic
signal model in [7], where each time-frequency coefficient was
modeled as a product between a continuous random variable and a
0/1 discrete Bernoulli random variable (indicating the “presence”
of the source). This way signals can be modeled as independent

random variables, and one can derive the maximum likelihood
(ML) estimator of the mixing parameters.

The ICA literature scarcely discusses the noise case [8]. BSS
and deconvolution results of a theoretical nature in dealing with
noise were presented in [5]. For the two-channel system in [4], the
ML estimator of the mixing parameters was derived in the pres-
ence of Gaussian sensor noise. However the noise element repre-
sented a technicality in that noise was considered in the limit zero
in order to be able to derive parameter update equations. Nonethe-
less the approach proved effective on real non-noisy data.

In this paper we deal with the multi-channel case from an al-
gorithmic perspective. We present a novel approach to BSS ex-
ploiting TF properties of the input data, which is readily applied
to speech separation on two, four, six and eight channels. For this,
we extend the ML estimators derived before (under the W-disjoint
orthogonality assumption). The ML approach considers both mix-
ing parameters and sources, unlike in [4] where the optimization
was over mixing parameters only. The estimation algorithm iter-
ates two optimization steps. First, likelihood is optimized over the
set of mixing parameters for each source separately. Second the
partition of TF points is optimized. For the purposes of this paper
we consider the anechoic mixing model only. However the method
presented can be extended to arbitrary complex mixing models.

The organization of the paper is as follows. Section 2 presents
the signal mixing model and a statistical motivation of the W-
disjoint orthogonality signal model. Section 3 shows the deriva-
tion of the ML estimator of mixing parameters and source signals,
and its implementation by an iterative procedure. Section 4 exper-
imentally highlights the capability of the system to deal with noisy
echoic data, and its scaling properties. Experiments with two, four,
six and eight inputs show increased separation capability and de-
creased artifacts with an increase in the number of inputs on data
ranging from anechoic to echoic.

2. MIXING MODEL AND SIGNAL ASSUMPTION

2.1. The Mixing Model

Consider the measurements ofL source signals by a equispaced
linear array ofD sensors under far-field assumption where only
the direct path is present. In this case, without loss of generality,
we can absorb the attenuation and delay parameters of the first
mixturex1(t), into the definition of the sources:

x1(t) =
L∑

l=1

sl(t) + n1(t)

xk(t) =
L∑

l=1

(1 − ak,l)sl(t − τk,l) + nk(t), 2 ≤ k ≤ D (1)
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wheren1, . . . , nD are the sensor noises, and(ad,l; τd,l) are the
attenuation and delay parameters of sourcel to sensord. For the
far-field model and equispaced sensor array, the attenuationsad,l

and delaysτd,l are linearly distributed across the sensors (i.e. with
respect to indexd). Thus we can define the average attenuational,
and delayτl, so that

ad,l = (d−1)al, τd,l = (d−1)τl, 1 ≤ d ≤ D, 1 ≤ l ≤ L (2)

Clearly other mixing models can be considered at the expense of
increasing the model complexity. We use∆ to denote the maximal
possible delay between adjacent sensors, and thus|τl| ≤ ∆, ∀l.

We denote byXd(k, ω), Sl(k, ω), Nd(k, ω) the short-time
Fourier transform of signalsxd(t), sl(t), andnd(t), respectively,
with respect to a windowW (t), wherek is the frame index, andω
the frequency index. Then the mixing model (1) turns into

Xd(k, ω) =
L∑

l=1

(1− (d−1)al)e
−iω(d−1)τl Sl(k, ω)+Nd(k, ω) (3)

When no danger of confusion, we shall drop the argumentsk, ω
in Xd, Sl andNd.

Our problem is: given measurements(x1(t), . . ., xD(t))1≤t≤T

of the system (1) we want to determine the ML estimates of the
mixing parameters(al, τl)1≤l≤L and the source signals(s1(t),
. . ., sL(t))1≤t≤T . When the number of sources is greater than the
number of mixtures the problem is degenerate. In order to solve
this we rely on the W-disjoint orthogonality assumption.

2.2. The Stochastic W-Disjoint Orthogonal Signal Model

In [4] we called two signalss1 ands2 W-disjoint orthogonal, for a
given windowing functionW (t), if the supports of the windowed
Fourier transforms ofs1 ands2 are disjoint, that is:

S1(k, ω)S2(k, ω) = 0 , ∀k, ω (4)

ForL sourcesS1,. . .,SL the assumption generalizes to:

Si(k, ω)Sj(k, ω) = 0 , ∀ 1 ≤ i �= j ≤ L, ∀k, ω (5)

Such a deterministic constraint is not only rarely satisfied, but
it also implies that the signals are in general statistically depen-
dent1, which is not the case for voice signals. Yet, in [9] it has
been noticed that relation (4) is satisfied in an approximate sense
by real speech signals. To reconcile the inconsistent basis for the
theoretical development of the algorithm with the fact that the al-
gorithm works in practice, we take a closer look at our model, and
show that (4) can be seen as the limit of a stochastic model we
introduced in [7].

We briefly review the model and signal class from [7]. It states
that the time-frequency coefficientS(k, ω) of a speech signals(t)
factors as a product of a continuous random variable, sayG(k, ω),
and a 0/1 BernoulliV (k, ω):

S(k, ω) = V (k, ω)G(k,ω) (6)

Denoting byq the probability ofV to be 1, and byp(·) the p.d.f.
of G, the p.d.f. ofS turns into

pS(S) = qp(S) + (1 − q)δ(S) (7)

1Indeed, this is easily proved by the fact that the conditional distribution
p(S1 = s1|S2 �= 0) = δ(s1) is different from the conditionalp(S1 =
s1|S2 = 0).

with δ, the Dirac distribution. ForL independent signalsS1, . . . , SL,
the joint p.d.f. is obtained by conditioning with respect to the
Bernoulli random variables. To simplify the notation, we assume
all G(k, ω) have the same distributionp(·), and allV (k, ω) have
the sameq. We obtain:

p(S1, . . . , SL) = (1 − q)L
L∏

l=1

δ(Sl) + q(1 − q)L−1

×
L∑

l=1

p(Sl)

L∏

j=1,j �=l

δ(Sj ) + q2Rest(S1, . . . , SL) (8)

whereRest() contains terms with the condition thatat least two
sources are active simultaneously. The first two elements in the
sum correspond to the condition thatat most one source is active,
which is what is used in the disjoint orthogonality condition.

On the contrary, if we do not assume that at most one source is
active but rather approximate (8) whenq is very small, by ignoring
theq2 factor and after renormalization we get:

pWDO(S1, . . . , SL) =
1 − q

1 + (L − 1)q

L∏

l=1

δ(Sl)

+
q

1 + (L − 1)q

L∑

l=1

p(Sl)
∏

j �=l

δ(Sj ) (9)

This is the stochastic counterpart of the deterministic constraint
(4) for L sources. Equation (9) shows that the deterministic con-
straint on the signals (5) is a reasonable assumption in the stochas-
tic limit, hence the namepWDO. In this paper we do assume the
joint p.d.f. of the source signals in the short-time Fourier domain
is given by (9), with the interpretation that this is not an inconsis-
tent assumption but rather the limit of a stochastic model.

The second ingredient of our stochastic model is given by the
assumption the sensor noises are independently distributed and
have Gaussian distributions with zero mean andσ2 variance.

3. THE MAXIMUM LIKELIHOOD ESTIMATOR OF
SIGNAL AND MIXING PARAMETERS

In this section we derive the joint maximum likelihood estimator
of parameters and source signals under assumption 5. The source
signals naturally partition the time-frequency plane intoL disjoint
subsetsΩ1, . . . , ΩL, where each source signal is non-zero (i.e. ac-
tive). Thus the signals are given by the collectionΩ1,. . .,ΩL and
one complex variableS that defines the active signal:

Sl(k, ω) = S(k, ω)1Ωl(k, ω) (10)

Let the model parametersθ consist of the mixing parameters
(al, τl), 1 ≤ l ≤ L, the partition(Ωl)1≤l≤L andS. Its likelihood
and maximum log-likelihood estimator are given by:

L(θ)=
∏D−1

d=0

∏L
l=1

∏
(k,ω)∈Ωl

1
πσ2 exp{− 1

σ2 |Yd,l(k, ω)|2}
θ̂ML = argminθ

∑D−1
d=0

∑L
l=1

∑
(k,ω)∈Ωl

|Yd,l(k, ω)|2 (11)

whereYd,l(k, ω) = Xd+1(k, ω)−αd,l(ω)Sl(k, ω) andαd,l(ω) =

(1 − dal)e
−idτlω. For any partition(Ω1, . . . , ΩL) we define the

selection mapΣ : TF-plane → {1, . . . , L}, Σ(k, ω) = l iff
(k, ω) ∈ Ωl. ClearlyΣ defines a unique partition. Optimizing
overS in (11) we obtain

Ŝ =
1

∑D
d=1(1 − (d − 1)al)2

D∑

d=1

αd,lXd (12)

V - 294

➡ ➡



wherel = Σ(k, ω). Let us denote byRl(ω) theD-vector:

Rl(ω) =
[

1 α1,l(ω) · · · αD−1,l(ω)
]T

and byX the D-vector of measurements,[X1, . . . , XD]T . We
useA = (al, τl)1≤l≤L to denote the mixing parameters. Inserting
(12) into (11), the optimization problem reduces to:

(Â, Σ̂) = argmaxA,ΣJ(A, Σ) (13)

where:

J(A, Σ) =
∑

(k,ω)

1

‖RΣ(k,ω)(ω)‖2
|〈RΣ(k,ω)(ω), X(k, ω)〉|2

Note the criterion to maximize depends on a set of continuous
parametersA, and a selection mapΣ. A typical optimization
algorithm for such a criterion works as follows. The optimiza-
tion is done in two steps: first the optimization over the continu-
ous parameters, and then the optimization over the selection map
(or, equivalently, the partition). Such a procedure is iterated un-
til the criterion reaches a saturation floor. Because the criterion
is bounded above, we are guaranteed it will converge. Next we
describe solutions for the two optimization problems.

3.1 Optimal Partition
Given a set of mixing parameters,A = (al, τl)1≤l≤L, the

optimal selection map is simply given by

Σ̂(k, ω) = argmaxl
1

‖RΣ(k,ω)(ω)‖2
|〈RΣ(k,ω)(ω), X(k, ω)〉|2 (14)

The partition is then immediate:Ωl = {(k, ω)|Σ(k, ω) = l}.

3.2 Optimal Mixing Parameters
Now given a partition(Ωl)1≤l≤L, the optimal mixing param-

eters are obtained independently for eachl by:

(âl, τ̂l) = argmaxal,τl

∑

(k,ω)∈Ωl

1

‖Rl(ω)‖2
|〈Rl(ω), X(k, ω)〉|2 (15)

Expanding the denominator and numerator, we obtain quadratic
expressions inal. The criterion becomes

I(al, τl) =
αa2

l − 2βal + γ

µa2
l − 2νal + ρ

which can be easily optimized overal. We obtain

âl =
µγ−αρ−

√
(αρ−µγ)2−4(βµ−αν)(νγ−βρ)

2(βµ−αν)
(16)

This value should then be inserted inI above and optimization
overτl should be carried over by a gradient descent, or an exhaus-
tive search (becauseτl is between−∆ and+∆):

τ̂l = argmaxτl

α(τl)âl
2 − 2β(τl)âl + γ(τl)

µ(τl)âl
2 − 2ν(τl)âl + ρ(τl)

(17)

Summing these findings, the optimization algorithm becomes:

3.3 ML Algorithm

• Step 0. Initialize(a0
l , τ

0
l )1≤l≤L with, for instance random

values so that|a0
l | < 1 and|τ0

l | < ∆; Sets = 0, Js = 0,
and choose a stopping thresholdε;

• Step 1. Find the optimal partition(Ωs+1
l )1≤l≤L, and selec-

tion map,Σs+1 by solving (14) withal = as
l , τl = τ s

l ;

• Step 2. Find the optimal parameters(as+1
l , τ s+1

l ) from
(16,17) for each1 ≤ l ≤ L, and subset of time-frequency
pointsΩs+1

l ;

• Step 3. Sets = s + 1, and computeJs = J(As, Σs). If
(Js − Js−1)/Js > ε then go to Step 1; otherwise:

• Step 4. The exit values areal = as
l , τl = τ s

l , andΩl = Ωs
l ,

obtained afters iterations. The source signal are then com-
puted by converting the estimated time-frequency represen-
tations back into the time domain.

The algorithm can be modified to deal with an echoic mixing
model, or different array configurations at the expense of increased
computational complexity. It requires knowledge of the number of
sources, however this number is not limited to the number of sen-
sors. It works also in non-square case. The algorithm is guaranteed
to converge to a local minimum only.

Since we used (9) as the stochastic limit of (8), the signal es-
timator we derive isthe maximum á posteriori with respect to the
prior joint p.d.f. (9). However, if one adopts the deterministic
point of view regarding (5), our estimator is truly the maximum
likelihood estimator.

4. EXPERIMENTAL RESULTS

We implemented the algorithm and applied it on realistic synthetic
mixtures generated with a ray tracing model. Mixtures consisted
of four source signals in different room environments and Gaus-
sian noise. The room size was4×5×3.2 m. We used three setups
corresponding to anechoic mixing, low echoic (reverberation time
18 ms), and echoic (reverberation time130 ms). The microphones
formed a linear array with 2 cm spacing. Source signals were dis-
tributed in the room. Input signals were sampled at 16KHz. For
time-frequency representation we used a Hamming window of 256
samples and 50% overlap. Noise was added on each channel. The
average (individual) signal-to-noise-ratio (SNR) was0 dB. The
average input signal-to-interference-ratio (SIR) was about−5 dB.
Each test was performed three times with independent noise real-
izations.

The optimization problem (17) was solved through an exhaus-
tive search over a grid of 200 points (thus the precision in esti-
mating τ was roughly 0.005 sample). Experimentally, the opti-
mization algorithm converged very fast. In at most six iterations it
reached10−3% of the local maximum.

To compare results, we used two criteria: output average sig-
nal to interference ratio gain (includes other voices and noise) and
signal distortion, defined as follows:

SIRgain =
1

Nf

Nf∑

k=1

10log10(
‖ So ‖2

‖ Ŝ − So ‖2

‖ X − Si ‖2

‖ Si ‖2
) (18)

distortion =
1

Nf

Nf∑

k=1

10log10

‖ So − Si ‖2

‖ Si ‖2
(19)

where:Nf is the number of frames where the summand is above
−10 dB for SIR gain, and−30 dB for distortion; Ŝ is the esti-
mated signal that containsSo contribution of the original signal;
X is the mixing at sensor 1, andSi is the input signal of interest at

V - 295

➡ ➡



D Anechoic LowEchoic Echoic
2 -4.86 (0.94) -4.93 (0.80) -4.84 (1.05)
4 -3.31 (0.95) -2.88 (0.90 -2.86 (0.89)
6 -3.85 (1.24) -3.36 (1.02) -2.99 (1.04)
8 -4.14 (1.28) -4.14 (1.16) -2.80 (0.80)

Table 1. Distortions for 0dB input SNR: mean (standard deviation)
for D = 2, 4, 6, 8.

sensor 1. The summands were saturated at+30 dB for SIR gain
and +10 dB for distortion. Ideally,SIRgain should be a large
positives, whereasdistortion should be a large negative.

We present results on noisy data for which SNR level (com-
puted for average voice on a channel) is 0 dB. SIR gains are pre-
sented in Figure 1 and the distortion values are given in Table 1.
Results show separation of all voices particularly forD ≥ 4 (a
sample of input and outputs forD = 4 is given in Figure 2. Also
SIR gains tend to improve with an increase in the number of sen-
sors. This indicates that separation power of the system increases.
Also, one can notice a decrease in performance as we move from
anechoic to echoic data. Artifacts as measured by distortion do
decrease, with the exception of the two channel case. In that case,
separation of all voices does not take place. Three outputs out of
four contain merely a mixture of the signals, therefore distortion
measures are better at the cost of decreased separation.

Fig. 1. SIR gains for 2-8 microphones on three data types (ane-
choic, low echoic and echoic). Each bar includes one standard
deviation bounds.

5. CONCLUSIONS

Real source separation scenarios are rarely square. On the con-
trary, situations constantly vary between the so called degenerate
case and the over specified case. By being able to deal evenly with
such cases and in the presence of noise, the present approach opens
the door to audio source separation in realistic scenarios.

This was possible by exploiting the time frequency sparse-
ness of signals. We showed that disjointness in time-frequency,
although inconsistent theoretically for a deterministic model, is
justifiable from a stochastic perspective. We modeled each time-
frequency coefficient as a product between a continuous random
variable and a discrete 0/1 Bernoulli random variable. In the limit
this corresponded to the deterministic W-disjoint orthogonality
model as studied in [9].
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Fig. 2. Example of 4-channel algorithm behavior on mixture of
noise and four voices (−8.5 and−3.5 dB input SIR). The sepa-
rated outputs show an SIR gain of 7, 4, 5.3 and 9.5 dB respectively.

Our source separation algorithm implements the maximum
likelihood estimator for both mixing parameters and source sig-
nals under a direct-path mixing model and for a linear array of
sensors. We presented an iterative procedure to optimize the like-
lihood, similar in spirit to hybrid optimization algorithms. It is
worthy to outline the nice scaling properties of the approach both
algorithmically and experimentally. The former refers to scalabil-
ity in the number of inputs (here we used two, four, six and eight
microphone linear arrays). The latter views the increased separa-
tion power and decreased artifacts with an increase in the number
of inputs on echoic data.

Future work could address the question whether anything is
to be gained by considering an echoic model. This extension is
naturally feasible in this approach.
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