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ABSTRACT random variables, and one can derive the maximum likelihood
(ML) estimator of the mixing parameters.

Few source separation and independent component analysis  The ICA literature scarcely discusses the noise case [8]. BSS
approaches attempt to deal with noisy data. We consider an addiand deconvolution results of a theoretical nature in dealing with
tive noise mixing model with an arbitrary number of sensors and noise were presented in [5]. For the two-channel system in [4], the
possibly more sources than sensors (the “degenerate separatiomiL estimator of the mixing parameters was derived in the pres-
problem”) when sources are disjointly orthogonal. We show how ence of Gaussian sensor noise. However the noise element repre-
disjoint orthogonality can be viewed as a limit of a stochastic voice sented a technicality in that noise was considered in the limit zero
modeling assumption. This is the basis for our approach to noisyin order to be able to derive parameter update equations. Nonethe-
model estimation by maximum likelihood, under the direct-path less the approach proved effective on real non-noisy data.
far-field assumptions. The implementation of the derived criterion In this paper we deal with the multi-channel case from an al-
involves iterating two steps: a partitioning of the time-frequency gorithmic perspective. We present a novel approach to BSS ex-
plane for separation followed by an optimization of the mixing pa- ploiting TF properties of the input data, which is readily applied
rameter estimates. The solution is applicable to an arbitrary num-to speech separation on two, four, six and eight channels. For this,
ber of microphones and sources. Experimentally, we show the cawe extend the ML estimators derived before (under the W-disjoint
pability of the technique to separate four voices from two, four, six orthogonality assumption). The ML approach considers both mix-
and eight channel recordings in the presence of strong noise.  ing parameters and sources, unlike in [4] where the optimization
was over mixing parameters only. The estimation algorithm iter-
ates two optimization steps. First, likelihood is optimized over the
set of mixing parameters for each source separately. Second the
partition of TF points is optimized. For the purposes of this paper
Source separation promises to further a variety of applications ofye consider the anechoic mixing model only. However the method
speech enhancement and separation beyond what is possible tQsesented can be extended to arbitrary complex mixing models.
day with classical microphone array techniques [1]. In particular = The organization of the paper is as follows. Section 2 presents
for audio signals (the domain of interest in this work), a variety of the signal mixing model and a statistical motivation of the W-
BSS techniques have been introduced in recent years. Few workjjsjoint orthogonality signal model. Section 3 shows the deriva-
on real audio data (e.g. [2, 3, 4]), even fewer with noisy data [S], tjon of the ML estimator of mixing parameters and source signals,
and most deal with the “square” case of source separation (equahng its implementation by an iterative procedure. Section 4 exper-
number of sources and sensors). Claims of generalization to thmentally highlights the capability of the system to deal with noisy
non-square case exist, however most often it is not clear how techgchoic data, and its scaling properties. Experiments with two, four,
niques would scale, neither from an algorithmic perspective nor in sjx and eight inputs show increased separation capability and de-
terms of computational properties. creased artifacts with an increase in the number of inputs on data

[6] introduced a BSS technique for the separation of an arbi- ranging from anechoic to echoic.
trary number of sources from justo mixtures provided the time-
frequency representations of sources do not overlap. The key ob-
servation in the technique is that each time-frequency (TF) point
depend_s on at mps_,t one source _and its assoc_ia_te_d mixing parames The Mixing M odel
ters. This deterministic hypothesis was caN&ftlisjoint orthogo-
nality and is reviewed in section 2.2. In anechoic non-noisy envi- Consider the measurements bfsource signals by a equispaced
ronments, it is possible to extract the mixing parameters from theltlr?g?jrirggtayact)rz[i)ssigz%ﬁ Ulr:]dﬁ]risfacrgl‘zld Vﬁfﬁgﬂﬁ’é‘ggo"f"hgﬁzfg%
ratio of the TF represente_lt_lons of the mixtures. F’S'”g the MIXING e can at?sorb thpe attenuation and délay parametersgof the first
parameters, one can partition the TF representation of the m'Xt“resmixturea;l(t), into the definition of the sources:
to produce the original sources.

The deterministic signal model was extended to a stochastic
signal model in [7], where each time-frequency coefficient was ~ ** H o= Y sl +m®
modeled as a product between a continuous random variable and a =t
0/1 discrete Bernoulli random variable (indicating the “presence” <

_ —a o , <k<
of the source). This way signals can be modeled as independent k() lzzl(l ar)su(t =Ty +ni(t), 2s k<D (D)

1. INTRODUCTION

2. MIXING MODEL AND SIGNAL ASSUMPTION

L
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wheren,,...,np are the sensor noises, afw; ;;74,) are the
attenuation and delay parameters of sodrteesensorwd. For the
far-field model and equispaced sensor array, the attenuations
and delays ; are linearly distributed across the sensors (i.e. with
respect to index). Thus we can define the average attenuaiion
and delayr;, so that

ad,1 = (d—l)al, Td,l = (d—l)‘l‘l, 1 S d S D,l S l S L (2)

Clearly other mixing models can be considered at the expense of

increasing the model complexity. We uAgo denote the maximal
possible delay between adjacent sensors, andthjus A, V.

We denote byX,(k,w), Si(k,w), Na(k,w) the short-time
Fourier transform of signals.(t), s;(t), andnq(t), respectively,
with respect to a windowV (), wherek is the frame index, and
the frequency index. Then the mixing model (1) turns into

L
Xa(k,w) =) (1= (d=1Day)e” VT8 (k,w) + Na(k,w) (3)
=1
When no danger of confusion, we shall drop the argumknis
in Xd, S ande.

Our problem is: given measuremefus (¢), ..., zp(t))1<i<r
of the system (1) we want to determine the ML estimates of the
mixing parameterga;, 71)1<i<r. and the source signals: (),

..., s.(t))1<e<7. When the number of sources is greater than the

with 4, the Dirac distribution. FoE independent signals;, . .., S,
the joint p.d.f. is obtained by conditioning with respect to the
Bernoulli random variables. To simplify the notation, we assume
all G(k,w) have the same distributigs(-), and allV (k, w) have

the same;. We obtain:

p(S1,...,5L)

L
A =" J]6(5) + a1 — )7
=1
L L
x> () ] 6(S;)+ ¢*Rest(Si,...,SL) 8)
=1 j=1,5#1
whereRest() contains terms with the condition thattleast two
sources are active simultaneously. The first two elements in the
sum correspond to the condition tretmost one source is active,
which is what is used in the disjoint orthogonality condition.
On the contrary, if we do not assume that at most one source is
active but rather approximate (8) wheis very small, by ignoring
the¢? factor and after renormalization we get:

L
pwoo(S1,...,5L) = HI(L;fql)q 11 s¢s0)
=1
L
7 .
+1+(L_1)qlzzlp(sl)jﬂ¢lé(sj) ©

number of mixtures the problem is degenerate. In order to solve Thjs js the stochastic counterpart of the deterministic constraint

this we rely on the W-disjoint orthogonality assumption.

2.2. The Stochastic W-Digjoint Orthogonal Signal Model

In [4] we called two signals; ands2 W-digjoint orthogonal, for a
given windowing functiort¥ (), if the supports of the windowed
Fourier transforms of; ands; are disjoint, that is:
S1(k,w)S2(k,w) =0, Vk,w 4)
For L sourcesSs,. . .,St, the assumption generalizes to:
Si(k,w)S;(k,w)=0, V1<i#j<L,Vk,w (5)

Such a deterministic constraint is not only rarely satisfied, but

it also implies that the signals are in general statistically depen-

dent, which is not the case for voice signals. Yet, in [9] it has

(4) for L sources. Equation (9) shows that the deterministic con-
straint on the signals (5) is a reasonable assumption in the stochas-
tic limit, hence the namewpo. In this paper we do assume the
joint p.d.f. of the source signals in the short-time Fourier domain
is given by (9), with the interpretation that this is not an inconsis-
tent assumption but rather the limit of a stochastic model.

The second ingredient of our stochastic model is given by the
assumption the sensor noises are independently distributed and
have Gaussian distributions with zero mean ahdariance.

3. THE MAXIMUM LIKELIHOOD ESTIMATOR OF
SIGNAL AND MIXING PARAMETERS

In this section we derive the joint maximum likelihood estimator
of parameters and source signals under assumption 5. The source

been noticed that relation (4) is satisfied in an approximate sensesignals naturally partition the time-frequency plane ibtdisjoint

by real speech signals. To reconcile the inconsistent basis for thesubset$?, . .

theoretical development of the algorithm with the fact that the al-
gorithm works in practice, we take a closer look at our model, and

show that (4) can be seen as the limit of a stochastic model we

introduced in [7].

We briefly review the model and signal class from [7]. It states
that the time-frequency coefficieft(k, w) of a speech signai(t)
factors as a product of a continuous random variable(ay w),
and a 0/1 BernoullV (k, w):

S(k,w) =V(k,w)G(k,w) (6)

Denoting byqg the probability ofl” to be 1, and by(-) the p.d.f.
of G, the p.d.f. ofS turns into

ps(S) = gp(S) + (1 — )0 (S) )

lindeed, this is easily proved by the fact that the conditional distribution
p(S1 = s1|S2 # 0) = 4(s1) is different from the conditionap(S:
81|52 = 0).

., Qr, where each source signal is non-zero (i.e. ac-
tive). Thus the signals are given by the collection. . .,Q2;, and
one complex variablé that defines the active signal:

Si(k,w) = S(k,w)lq, (k,w) (10)
Let the model parametefsconsist of the mixing parameters

(al, Tl), 1< l <L, the partition(Ql)lglgL and.S. Its likelihood
and maximum log-likelihood estimator are given by:

£O)=T12 5 T Tk, ooz exp{— L Yai(k,w)2}

Orer =argming 7 S0 Yk wyea, [Yaulk,w)[? (1)
whereYd,l(k_, w) = Xd+1(k,w)—ad,l(w)Sl(k,w) andad,l(w) =
(1 — da;)e™ %", For any partition(Q, ..., Q) we define the
selection map: : TF-plane — {1,...,L}, X(k,w) = [ iff
(k,w) € Q. ClearlyX defines a unique partition. Optimizing
overS in (11) we obtain

1 D
S (12
Zd:1(1 - (d - 1)‘”)2 d=1

a1 Xq
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wherel = X(k,w). Let us denote by, (w) the D-vector: e Step 1. Find the optimal partitioff2;*'):<;<r., and selec-
tion map,X**t* by solving (14) witha; = af, 7 = 77;
R =[1 anWw) ap_11(w) " o+l ekl
l : . e Step 2. Find the optimal parametefis, ) from

(16,17) for each < [ < L, and subset of tlme -frequency
pointsQ;T!;

Step 3. Set = s + 1, and compute/® = J(A®,

and by X the D-vector of measurement§X, ..., Xp]". We
useA = (a1, 71)1<i<1 to denote the mixing parameters Inserting

(12) into (11), the optimization problem reduces to: . o). If

(A,%) = argmax, »J(A, %) (13) (J5 — J*71)/J* > ethen go to Step 1; otherwise:
) - 2 El .
here: e Step 4. The exit values atg = af, 7; = 7/, andQ; = Q},
where: obtained aftes iterations. The source signal are then com-
J(A, D) = 1 [(Rass (k) (@), X (I W)[? puted by converting the estimated time-frequency represen-

(e 1Bk, @12 tations back into the time domain.

Note the criterion to maximize depends on a set of continuous ~ The algorithm can be modified to deal with an echoic mixing
parametersd, and a selection maf. A typical optimization model, or different array configurations at the expense of increased
algorithm for such a criterion works as follows. The optimiza- computational complexity. It requires knowledge of the number of
tion is done in two steps: first the optimization over the continu- sources, however this number is not limited to the number of sen-

ous parameters, and then the optimization over the selection ma$ors. It works also in non-square case. The algorithm is guaranteed

(or, equivalently, the partition). Such a procedure is iterated un-
Because the criterion

til the criterion reaches a saturation floor.

to converge to a local minimum only.
Since we used (9) as the stochastic limit of (8), the signal es-

is bounded above, we are guaranteed it will converge. Next wetimator we derive ighe maximum a posteriori with respect to the

describe solutions for the two optimization problems.

3.1 Optimal Partition
Given a set of mixing parametersl = (a;, 71)1<i<r, the
optimal selection map is simply given by

$(k,w) = argmax (R (k,0) (@), X (k,w) [ (14)

1.

| R (k) (W)I2
The partition is then immediat€?, = {(k,w)|X(k,w) =

3.2 Optimal Mixing Parameters
Now given a partition(§%;)1<:< 1., the optimal mixing param-
eters are obtained independently for eably:

1
2 [l B ()2

(kw)e

(61, %) = argmay, _, [(R;(w), X (k,w))|? (15)

prior joint p.d.f. (9). However, if one adopts the deterministic
point of view regarding (5), our estimator is truly the maximum
likelihood estimator.

4. EXPERIMENTAL RESULTS

We implemented the algorithm and applied it on realistic synthetic
mixtures generated with a ray tracing model. Mixtures consisted
of four source signals in different room environments and Gaus-
sian noise. The room size was 5 x 3.2 m. We used three setups
corresponding to anechoic mixing, low echoic (reverberation time
18 ms), and echoic (reverberation tim80 ms). The microphones
formed a linear array with 2 cm spacing. Source signals were dis-
tributed in the room. Input signals were sampled at 16KHz. For
time-frequency representation we used a Hamming window of 256
samples and 50% overlap. Noise was added on each channel. The

Expanding the denominator and numerator, we obtain quadraticaverage (individual) signal-to-noise-ratio (SNR) wadB. The

expressions im;. The criterion becomes

aa? — 2Ba; + v

I(a;,7) =
(a2,7) pa? —2va; + p

which can be easily optimized over. We obtain

G = py—ap—+/(ap—py)2—4(Bu—av)(vy—EBp)
= 2(Bu—av)

(16)

This value should then be inserted inabove and optimization

average input signal-to-interference-ratio (SIR) was abdutiB.
Each test was performed three times with independent noise real-
izations.

The optimization problem (17) was solved through an exhaus-
tive search over a grid of 200 points (thus the precision in esti-
mating  was roughly 0.005 sample). Experimentally, the opti-
mization algorithm converged very fast. In at most six iterations it
reachedl 0~3% of the local maximum.

To compare results, we used two criteria: output average sig-
nal to interference ratio gain (includes other voices and noise) and

overr; should be carried over by a gradient descent, or an exhaussignal distortion, defined as follows:

tive search (becausegis between—A and+A):

a(n)d® = 26(m)di + ()
w(m)di® = 2v(m)d; + p(m)

7, = argmax, a7)

Summing these findings, the optimization algorithm becomes:

3.3ML Algorithm

e Step 0. Initialize(a}, 7 )1<1<L with, for instance random
values so thafa)| < 1 and|r| < A; Sets = 0, J* = 0,
and choose a stopping threshejd

Ny

) 1 I Soll* || X—8il?
SIRgain = — 10log o (—= ) (18)
N & s, TSP

_— = S; |17
distortion = Z 1010g10 H S, H2 (29)

Ny o=

where: N; is the number of frames where the summand is above
—10 dB for SIR gain, and—30 dB for distortion; S is the esti-
mated signal that contain$, contribution of the original signal;

X isthe mixing at sensor 1, arffj is the input signal of interest at
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D Anechoic | LowFEchoic FEchoic 05 ‘ ‘ ‘ | ‘ ‘
2 | -4.86 (0.94)| -4.93 (0.80) | -4.84 (1.05) m
4 | -3.31(0.95)| -2.88(0.90 | -2.86 (0.89) R SURLLLR ILULR B AV A . A
6 | -3.85(1.24)| -3.36 (1.02) | -2.99 (1.04) e S A —
8 | -4.14 (1.28)| -4.14 (1.16) | -2.80 (0.80) - W“H*WWWH—

Table 1. Distortions for 0dB input SNR: mean (standard deviation)
forD =2,4,6,8.

05F B
& 0
sensor 1. The summands were saturate¢ 3t dB for SIR gain sk ' ‘ |

and +10 dB for distortion. Ideally,SIRgain should be a large
positives, whereadistortion should be a large negative.

We present results on noisy data for which SNR level (com-
puted for average voice on a channel) is 0 dB. SIR gains are pre- 0 1 2 3 4 5 6 7
sented in Figure 1 and the distortion values are given in Table 1.

Results show separation of all voices particularly for> 4 (a Fig. 2. Example of 4-channel algorithm behavior on mixture of

sample of input and outputs f@» = 4 is given in Figure 2. Also nice and four voices<8.5 and—3.5 dB input SIR). The sepa-

SIR gaiqs Fenq to improve with an increase in the numbgr of S€N" rated outputs show an SIR gain of 7, 4, 5.3 and 9.5 dB respectively.
sors. This indicates that separation power of the system increases.

Also, one can notice a decrease in performance as we move from
anechoic to echoic data. Artifacts as measured by distortion do
decrease, with the exception of the two channel case. In that cas ikel
separation of all voices does not take place. Three outputs out o
four contain merely a mixture of the signals, therefore distortion
measures are better at the cost of decreased separation.

Our source separation algorithm implements the maximum
ihood estimator for both mixing parameters and source sig-
nals under a direct-path mixing model and for a linear array of
sensors. We presented an iterative procedure to optimize the like-
lihood, similar in spirit to hybrid optimization algorithms. It is
worthy to outline the nice scaling properties of the approach both
algorithmically and experimentally. The former refers to scalabil-
ity in the number of inputs (here we used two, four, six and eight
microphone linear arrays). The latter views the increased separa-
tion power and decreased artifacts with an increase in the number
Bsnechsic of inputs on echoic data.
=1 _ e Future work could address the question whether anything is
to be gained by considering an echoic model. This extension is
naturally feasible in this approach.

=
=}
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s
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